EN PL
REVIEW PAPER
Pathogenesis of rheumatoid arthritis. Part II – innate immunity, new therapeutic targets
 
 
More details
Hide details
 
Online publication date: 2011-05-06
 
 
Reumatologia 2011;49(2):115-121
 
KEYWORDS
ABSTRACT
Chronic inflammation of synovial membrane and hyperplasia of intimal lining, which transforms into the invasive tissue – pannus, are characteristic features of rheumatoid arthritis (RA). Fibroblast-like (FLS) and macrophage-like (MfLS) synoviocytes are cellular components of intimal lining. The architecture of this layer is established by FLS, while both types of synoviocytes form niches for infiltrating cells as well as represent the major source of locally synthesized proinflammatory factors and connective tissue degrading enzymes. Abnormal blood vessels’ formation and massive infiltration of subsynovium by acquired and innate immune cells results in synovial hypoxia. Due to the action of numerous stimulating factors, synoviocytes and innate immune cells are kept in the activation state, and continuously support inflammatory response and tissue destructive processes. The most important reports on the role of these cells in RA pathogenesis are discussed, summarized and illustrated on the figure. Progress in the research on this subject allows for new therapeutic procedures to be developed and some of them are currently tested in clinical trials. This issue is also reviewed in the paper. The role of cytokines and destruction of joint cartilage and bone will be described in the next review article (the last article in the series concerning pathogenesis of RA).
REFERENCES (53)
1.
Baccala R, Gonzalez-Quintial R, Lawson BP, et al. Sensors of the innate immune system: their mode of action. Nat Rev Rheumatol 2009; 5: 448-456.  .
 
2.
Kontny E, Maśliński W. Sieć cytokin i implikacje terapeutyczne w chorobach reumatycznych. W: Leczenie biologiczne chorób reumatycznych. Wiland P (red.). Termedia, Poznań 2009; 9-36.  .
 
3.
Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327: 291-295.  .
 
4.
Kontny E. Patogeneza reumatoidalnego zapalenia stawów. Część I – odpowiedź nabyta, uwarunkowania genetyczne i środowiskowe. Reumatologia 2011; 49: 47-54.  .
 
5.
Kontny E, Maśliński W. Zaburzenia immunologiczne w patogenezie chorób reumatycznych. W: Reumatologia kliniczna. Zimmermann-Górska I (red.). Wydawnictwo Lekarskie PZWL, Warszawa 2008; 101-131.  .
 
6.
Lee DM, Kiener HP, Agarwal SK, et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 2007; 315: 1006-1010.  .
 
7.
Kiener HP, Watts GFM, Cui Y, et al. Synovial fibroblasts self-direct multicellular lining architecture and synthesis function in three-dimensional organ culture. Arthritis Rheum 2010; 62: 742-752.  .
 
8.
Evans HG, Gullick NJ, Kelly S, et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 response. PNAS 2009; 106: 6232-6237.  .
 
9.
Dong W, Li X, Zhu P. Infiltrations of plasma cells in synovium are highly associated with synovial fluid levels of APRIL in inflamed peripheral joints of rheumatoid arthritis. Rheumatol Int 2009; 29: 801-806. .
 
10.
McQueen FM, Ostendorf B. What is MRI bone oedema in rheumatoid arthritis and why does it master? Arthritis Res Ther 2006; 8: 222 (doi: 10.1186/ar2075). .
 
11.
Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum 1996; 39: 1781-1790. .
 
12.
Kasperkovitz PV, Timmer TC, Smeets TJ, et al. Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of a link between an increased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum 2005; 52: 430-441. .
 
13.
Bauer S, Jendro MC, Walde A, et al. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res Ther 2006; 8: R171 (doi: 10.1186/ar2080). .
 
14.
Csepeggi C, Jiang M, Kojami F, et al. Somatic cell plasticity and Niemann-Pick type C2 protein: fibroblast activation. J Biol Chem 2011; 286: 2078-2087. .
 
15.
Song HY, Kim MY, Kim KH, et al. Synovial fluid of patients with rheumatoid arthritis induces -smooth muscle actin in human adipose-derived mesenchymal cells through a TGF-1-dependent mechanism. Exp Mol Med 2010; 42: 565-573. .
 
16.
Thurlings RM, Wijbrandts CA, Bennink RJ, et al. Monocyte scintigrapy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease. PLoS ONE 2009; 4: e7865 (doi: 10.1371/journal.pone.0007865). .
 
17.
Li X, Makarov SS. An essential role of NF-kappaB in the “tumor-like” phenotype of arthritic synoviocytes. PNAS 2006; 103: 17432-17437. .
 
18.
Karouzakis E, Gay RE, Michel BA, et al. DNA hypomethylation of rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2009; 60: 3613-3622. .
 
19.
Nakamachi Y, Kawano S, Takenokuchi M, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 2009; 60: 1294-1304. .
 
20.
Szekanecz Z, Besenyei T, Szentpetery A, et al. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol 2010; 22: 299-306. .
 
21.
Kokkonen H, Söderström I, Rocklöv J, et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum 2010; 62: 383-391. .
 
22.
Kuan WP, Tam LS, Wong CK, et al. CXCL9 and CXCL10 as sensitive markers of disease activity in patients with rheumatoid arthritis. J Rheumatol 2010; 37: 257-264. .
 
23.
Ng CT, Biniecka M, Kennedy A, et al. Synovial tissue hypoxia and inflammation in vivo. Ann Rheum Dis 2010; 69: 1389-1395. .
 
24.
Izquierdo E, Canete JD, Celis R, et al. Immature blood vessels in rheumatoid synovium are selectively depleted in response to anti-TNF therapy. PLoS ONE 2009; 12: e8131 (doi; 10.1371/journal.pone.0008131). .
 
25.
Kennedy A, Ng CT, Biniecka M, et al. Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum 2010; 62: 711-721. .
 
26.
Pelletier M, Maggi L, Micheletti A, et al. Evidence for cross-talk between human neutrophils and Th17 cells. Blood 2010; 115: 335-343. .
 
27.
Poduval P, Sillat T, Virtanen I, et al. Immigration check for neutrophils in RA lining: laminin 5 low expression regions act as exit points. Scand J Immunol 2010; 39: 132-140. .
 
28.
Turrel-Davin F, Tournadre A, Pachot A, et al. FoxO3a involved in neutrophil and T cell survival is over expressed in rheumatoid blood and synovial tissue. Ann Rheum Dis 2010; 69: 755-760. .
 
29.
Schuerwegh AJ, Ioan-Facsinay A, Dorjee AL, et al. Evidence for a functional role of IgE anticitrullinated protein antibodies in rheumatoid arthritis. PNAS 2010; 107: 2586-2591. .
 
30.
Murphy GEJ, Xu D, Liew FY, et al. Role of interleukin 33 in human pathology. Ann Rheum Dis 2010; 69 (suppl. I): i43-i47. .
 
31.
Sawamukai N, Yukawa S, Saito K, et al. Mast cell-derived tryptase inhibits apoptosis of human rheumatoid synovial fibroblasts via rho-mediated signalling. Arthritis Rheum 2010; 62: 952-959. .
 
32.
Hueber AJ, Asquith DL, Miller AM, et al. Cutting edge: mast cells express IL-17A in rheumatoid arthritis synovium. J Im­munol 2010; 184: 3336-3340. .
 
33.
Guma M, Ronacher L, Liu-Bryan R, et al. Caspase-1-independent activation of interleukin-1beta in neutrophil- predominant inflammation. Arthritis Rheum 2009; 60: 3642-3650. .
 
34.
Richez Ch, Schaeverbeke T, Dumoulin Ch, et al. Myeloid dendritic cells correlate with clinical response whereas plasmacytoid dendritic cells impact autoantibody development in rheumatoid arthritis patients treated with infliximab. Arthritis Res Ther 2009; 11:R100 (doi:10.1186/ar2746). .
 
35.
Wenink MH, Santegoets KC, Roelofs MF, et al. The inhibitory FcIIb receptor dampens TLR-4-mediated immune responses and is selectively up-regulated on dendritic cells from rheumatoid arthritis patients with quiescent disease. J Immunol 2009; 183: 4509-4520. .
 
36.
Kavousanaki M, Makrigiannakis A, Boumpas D, et al. Novel role of plasmacytoid dendritic cells in humans. Induction of interleukin-10-producing Treg cells by plasmacytoid dendritic cells in patients with rheumatoid arthritis responding therapy. Arthritis Rheum 2010; 62: 53-63. .
 
37.
Harry RA, Anderson AE, Isaacs JD, et al. Generation and characterization of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann Rheum Dis 2010; 11: 2042-2050. .
 
38.
Ospelt C, Brentano F, Jüngel A, et al. Expression, regulation, and signaling of the pattern-recognition receptor nucleotide-binding oligomerization domain 2 in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2009; 60: 355-363. .
 
39.
Gierut A, Perlman H, Pope RM. Innate immunity and rheumatoid arthritis. Rheum Dis Clin N Am 2010; 36: 271-296. .
 
40.
Andersson U, Harris HE. The role of HMGB1 in the pathogenesis of rheumatic disease. Biochim Biophys Acta 2010; 1799: 141-148. .
 
41.
Midwood K, Sacre S, Piccinini AM, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 2009; 15: 774-780. .
 
42.
Huang Q, Sobkoviak R, Jockheck-Clark AR, et al. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J Immunol 2009; 182: 4965-4973. .
 
43.
Take Y, Nakata K, Hashimoto J, et al. Specifically modified osteopontin in rheumatoid arthritis fibroblast-like synoviocytes supports interaction with B cells and enhances production of intereukin-6. Arthritis Rheum 2009; 60: 3591-3601. .
 
44.
Morimoto J, Kon S, Matusi Y, et al. Osteopontin as a target molecule for the treatment of inflammatory diseases. Curr Drug Targets 2010; 11: 494-505. .
 
45.
Vanags D, Williams B, Johnson B, et al. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 2006; 368: 855-863. .
 
46.
De Almeida DE, Ling S, Pi X, et al. Immune dysregulation by the rheumatoid arthritis shared epitope. J Immunol 2010; 185: 1927-1934. 47. Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327: 580-583. .
 
47.
Biro E, Nieuwland R, Tak PP, et al. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis 2007; 66: 1085-1092. .
 
48.
Carpintero R, Gruaz L, Brandt KJ, et al. HDL interfere with the binding of T cell microparticles to human monocytes to inhibit pro-inflammatory cytokine production. PLoS ONE 2010; 5: e11869 (doi: 10.1371/journal.pone.0011869). .
 
49.
Trouw LA, Haisma EM, Levarth EW, et al. Anti-citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum 2009; 60: 1923-1931. .
 
50.
Okroj M, Heinegärd D, Holmdahl R, et al. Rheumatoid arthritis and the complement system. Ann Med 2007; 39: 517-530. .
 
51.
Sjöberg AP, Manderson GA, Mörgelin M, et al. Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol Immunol 2009; 46: 830-839. .
 
52.
Jahn B, Von Kempis J, Krämer KL, et al. Interaction of the terminal complement components C5b-9 with synovial fibroblasts: binding to the membrane surface leads to increased levels in collagenase-specific mRNA. Immunology 1993; 78: 329-334. .
 
53.
Yuan G, Wei J, Zhou J, et al. Expression of C5aR (CD88) on synoviocytes isolated from patients with rheumatoid arthritis and osteoarthritis. Chin Med J (Engl) 2003; 116: 1408-1412.
 
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
eISSN:2084-9834
ISSN:0034-6233
Journals System - logo
Scroll to top