EN PL
REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Osteoarthritis (OA) is one of the most common degenerative diseases, and the number of patients has been constantly increasing. Non-steroidal anti-inflammatory drugs, glucocorticosteroids, opioids, etc., and surgical procedures, e.g. arthroplasty, are among the most common methods of treatment. There are reasons to believe that the gut microbiome (GMB) may influence inflammatory processes occurring in the pathomechanism of OA. The inflammatory processes occurring in the intestines may lead to disruption of tight junctions and increased concentrations of pro-inflammatory cytokines, resulting in increased permeability of intestines, causing low-grade inflammation, including in the joints. Methods of altering the GMB composition to reduce the inflammatory and joint dege­nerative processes are known only to some extent, and long-term research is required. Osteoarthritis, a particularly well-known and very widespread disease due to the aging population, is characterized by moderate and local inflammation. It occurs due to the effects of biomechanical cartilage wear with damage of joint structures, primarily through degenerative processes. OA represents a therapeutic challenge, and any element that can influence its inhibition is highly sought after. Therefore, these methods seem to offer a promising additional approach to treatment.
REFERENCES (44)
1.
Wu CL, Harasymowicz NS, Klimak MA, et al. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage 2020; 28: 544–554, DOI: 10.1016/j.joca.2019.12.007.
 
2.
Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systemic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol 2023; 5: E508–E522, DOI: 10.1016/S2665-9913(23)00163-7.
 
3.
Tong L, Yu H, Huang X, et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10: 60, DOI: 10.1038/s41413-022-00226-9.
 
4.
Man G, Mologhianu G. Osteoarthritis pathogenesis – a complex process that involves the entire joint. J Med Life 2014; 7: 37–41.
 
5.
Silverwood V, Blagojevic-Bucknall M, Jinks C, et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 2015; 23: 507–515, DOI: 10.1016/j.joca.2014.11.019.
 
6.
Felson DT, Zhang Y, Anthony JM, et al. Weight loss reduces the risk for symptomatic knee osteoarthritis in women. The Framingham Study. Ann Intern Med 1992; 116: 535–539, DOI: 10.7326/0003-4819-116-7-535.
 
7.
Sun HB. Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci 2010; 1211: 37–50, DOI: 10.1111/j.1749-6632.2010.05808.x.
 
8.
Spector TD, Harris PA, Hart DJ, et al. Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum 1996; 39: 988–995, DOI: 10.1002/art.1780390616.
 
9.
Sulsky SI, Carlton L, Bochmann F, et al. Epidemiological Evi­dence for Work Load as a Risk Factor for Osteoarthritis of the Hip: A Systematic Review. PLoS One 2012; 7: e31521, DOI: 10.1371/journal.pone.0031521.
 
10.
Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 2011; 25: 815–823, DOI: 10.1016/j.berh. 2011.11.013.
 
11.
Delco ML, Bonnevie ED, Bonassar LJ, Fortier LA. Mitochondrial dysfunction is an acute response of articular chondrocytes to mechanical injury. J Orthop Res 2018; 36: 739–750, DOI: 10.1002/jor.23651.
 
12.
Koike M, Nojiri H, Ozawa Y, et al. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci Rep 2015; 5: 11722, DOI: 10.1038/srep11722.
 
13.
Boer CG, Radjabzadeh D, Medina-Gomez C, et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat Commun 2019; 10: 4881, DOI: 10.1038/s41467-019-12873-4.
 
14.
Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 2018; 44: 38–50, DOI: 10.1016/j.cytogfr.2018.10.002.
 
15.
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11: 85–97, DOI: 10.1038/nri2921.
 
16.
Sekar S, Shafie SR, Prasadam I, et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci Rep 2017; 7: 46457, DOI: 10.1038/srep46457.
 
17.
Kumari A, Bhawal S, Kapila S, et al. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2022; 62: 619-639, DOI: 10.1080/10408398. 2020.1825286.
 
18.
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteo­arthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12: 812596, DOI: 10.3389/fcimb.2022.812596.
 
19.
Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol 2011; 23: 471–478, DOI: 10.1097/bor.0b013e328349c2b1.
 
20.
Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808, DOI: 10.1172/JCI19246.
 
21.
Cani PD, Bibiloni R, Knauf C, et al. Changes in Gut Micro­biota Control Metabolic Endotoxemia-Induced Inflammation in High- Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes 2008; 57: 1470–1481, DOI: 10.2337/db07-1403.
 
22.
Hauner H. Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc 2005; 64: 163–169, DOI: 10.1079/pns2005428.
 
23.
Antony B, Jones G, Jin X, Ding C. Do early life factors affect the development of knee osteoarthritis in later life: a narrative review. Arthritis Res Ther 2016; 18: 202, DOI: 10.1186/s13075-016-1104-0.
 
24.
O’Sullivan A, Farver M, Smilowitz JT. The Influence of Early Infant-Feeding Practices on the Intestinal Microbiome and Body Composition in Infants [published correction appears in Nutr Metab Insights 2016; 8 (Suppl 1): 87, DOI: 10.4137/NMI.S41125]. Nutr Metab Insights 2015; 8 (Suppl 1): 1–9, DOI: 10.4137/NMI.S29530.
 
25.
Stein MM, Hrusch CL, Gozdz J, et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N Engl J Med 2016; 375: 411–421, DOI: 10.1056/nejmoa1508749.
 
26.
Wampach L, Heintz-Buschart A, Fritz JV, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun 2018; 9: 5091, DOI: 10.1038/s41467-018-07631-x.
 
27.
Fouhy F, Watkins C, Hill CJ, et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun 2019; 10: 1517, DOI: 10.1038/s41467-019-09252-4.
 
28.
Hollister EB, Riehle K, Luna RA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Micro­biome 2015; 3: 36, DOI: 10.1186/s40168-015-0101-x.
 
29.
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635–1638, DOI: 10.1126/science.1110591.
 
30.
Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012; 3: 4–14, DOI: 10.4161/gmic.19320.
 
31.
Permuy M, Guede D, López-Peña M, et al. Comparison of various SYSADOA for the osteoarthritis treatment: an experimental study in rabbits. BMC Musculoskelet Disord 2015; 16: 120, DOI: 10.1186/s12891-015-0572-8.
 
32.
Bernad Pineda M. Current status of symptomatic slow-acting drugs for osteoarthritis (SYSADOAs) in Spain. Reumatol Clin 2016; 12: 181–183, DOI: 10.1016/j.reuma.2016.03.012.
 
33.
Shmagel A, Demmer R, Knights D, et al. The Effects of Gluco­samine and Chondroitin Sulfate on Gut Microbial Composition: A Systematic Review of Evidence from Animal and Human Studies. Nutrients 2019; 11: 294, DOI: 10.3390/nu11020294.
 
34.
Zafar H, Saier MH. Gut Bacteroides species in health and disease. Gut Microbes 2021; 13: 1–20, DOI: 10.1080/19490976.2020. 1848158.
 
35.
Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65: 426–436, DOI: 10.1136/gutjnl-2014-308778.
 
36.
Publishing HH. Exercise: Rx for overcoming osteoarthritis. Harvard Health. Available at: https://www.health.harvard.edu....
 
37.
Dunkin MA. Osteoarthritis Prevention. WebMD. 2022. Available at: https://www.webmd.com/osteoart...- prevention-1.
 
38.
Buck AN, Vincent HK, Newman CB, et al. Evidence-Based Dietary Practices to Improve Osteoarthritis Symptoms: An Umbrella Review. Nutrients 2023; 15: 3050–3050, DOI: 10.3390/nu15133050.
 
39.
BDA. Osteoarthritis and diet. 2023. Available at: https://www.bda.uk.com/resourc....
 
40.
Lee D, Albenberg L, Compher C, et al. Diet in the Pathogenesis and Treatment of Inflammatory Bowel Diseases. Gastroente­rology 2015; 148: 1087–1106, DOI: 10.1053/j.gastro.2015.01.007.
 
41.
Thomas S, Browne H, Mobasheri A, Rayman MP. What is the evidence for a role for diet and nutrition in osteoarthritis? Rheumatology (Oxford) 2018; 57 (Suppl 4): iv61–iv74, DOI: 10.1093/rheumatology/key011.
 
42.
Jin D, Wu S, Zhang Y, et al. Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome. Clin Ther 2015; 37: 996–1009.e7, DOI: 10.1016/ j.clinthera.2015.04.004.
 
43.
Ringel-Kulka T, Palsson OS, Maier D, et al. Probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 versus placebo for the symptoms of bloating in patients with functional bowel disorders: a double-blind study. J Clin Gastroenterol 2011; 45: 518–525, DOI: 10.1097/MCG.0b013e31820ca4d6.
 
44.
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis 2016; 22: 1137–1150, DOI: 10.1097/mib.0000000000000750.
 
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
eISSN:2084-9834
ISSN:0034-6233
Journals System - logo
Scroll to top