EN PL
REVIEW PAPER
Genetic factors in pathogenesis of rheumatoid arthritis
 
More details
Hide details
 
Online publication date: 2009-08-11
 
 
Reumatologia 2009;47(3):143-150
 
KEYWORDS
ABSTRACT
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disorder. The course of RA and its prognosis are variable. It may develop and progress slowly or rapidly causing disability and even mortality. The etiology of RA is unknown, but it is thought to have genetic and environmental basis. Familial aggregation of RA allow to suppose, that genetic factors appear to play a major role that can cause disease initiation.
 
REFERENCES (63)
1.
Ciranni R, Garbini F, Neri E, et al. The ”Braids Lady” of Arezzo: A case of rheumatoid arthritis in a 16th century mummy. Clin Exp Rheumatol 2002; 20: 745-752. .
 
2.
Fontecchio G, Ventura L, Azzarone R, et al. HLA-DRB genotyping of an Italian mummy from the 16th century with signs of rheumatoid arthritis. Ann Rheum Dis 2006; 65: 1676-1677. .
 
3.
de Vries RR, Huizinga TW, Toes RE. Redefining the HLA and RA association: to be or not to be anti-CCP positive. J Autoim 2005; 25: 21-25. .
 
4.
Hellier JP, Eliaou JF, Daurés JP, et al. HLA-DRB1 genes and patients with late onset rheumatoid arthritis. Ann Rheum Dis 2001; 60: 531-533. .
 
5.
Linn-Parker SP, van der Helm-van Mil AH, van Gaalen FA, et al. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann Rheum Dis 2006; 65: 366-371. .
 
6.
Turesson C, Schaid DJ, Weyand CM, et al. The impact of HLA-DRB1 genes on extra-articular disease manifestations in rheumatoid arthritis. Arthritis Res Ther 2005; 7: 1386-1393. .
 
7.
Kinikli G, Ates¸º A, Turgay M, et al. HLA-DRB1 genes and disease severity in rheumatoid arthritis in Turkey. Scand J Rheumatol 2003; 32: 277-280. .
 
8.
Lard LR, Boers M, Verhoeven A, et al. Early and aggressive treatment of rheumatoid arthritis patients affect the association of HLA class II antigens with progression of joint damage. Arthritis Rheum 2002; 46: 899-905. .
 
9.
Vang T, Congia M, Macis MD, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005; 37: 1317-1319. .
 
10.
Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337-338. .
 
11.
Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type I diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53: 3020-3023. .
 
12.
Kaufman KM, Kelly AJ, Herring BJ, et al. Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus erythematosus. Arthritis Rheum 2006; 54: 2533-2540. .
 
13.
Jagiello P, Aries P, Arning L, et al. The PTPN22 620W allele is a risk factor for Wegener’s granulosis. Arthritis Rheum 2005; 52: 4039-4043. .
 
14.
Lie BA, Viken MK, Odega°rd S, et al. Associations between the PTPN22 1858C/T polymorphism and radiographic joint destruction in patients with rheumatoid arthritis: Result from a 10-year longitudinal study. Ann Rheum Dis 2007; 66: 1604-1609. .
 
15.
Johansson M, Ärlestig L, Hallmans G, Rantapää-Dahlqvist S. PTPN22 polymorphism and anti-cyclic citrullinated peptide antibodies in combination strongly predicts future onset of rheumatoid arthritis and has a specificity of 100% for disease. Arthritis Res Ther 2006; 8: R19. .
 
16.
Kokkonen H, Johansson M, Innala L, et al. The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early rheumatoid arthritis in northern Sweden. Arthritis Res Ther 2007; 9: R56. .
 
17.
Kallberg H, Padyukov L, Plenge RM, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 2007; 80: 867-875. .
 
18.
Potter C, Hyrich KL, Tracey A, et al. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumor necrosis factor response in rheumatoid arthritis. Ann Rheum Dis 2009; 68: 69-74. .
 
19.
Rueda B, Reddy MV, González-Gay MA, et al. Analysis of IRF5 gene functional polymorphism in rheumatoid arthritis. Arthritis Rheum 2006; 54: 3815-3819. .
 
20.
Garnier S, Dieudé P, Michou L, et al. IRF5 rs2004640-T allele, the new genetic factor for systemic lupus erythematosus, is not associated with rheumatoid arthritis. Ann Rheum Dis 2007; 66: 828-831. .
 
21.
Shimane K, Kochi Y, Yamada R, et al. A single nucleotide polymorphism in the IRF5 promoter region is associated with susceptibility to rheumatoid arthritis in the Japanese patients. Ann Rheum Dis 2009; 68: 377-383. .
 
22.
Liu Y, Endo Y, Iwaki D, et al. Human M-Ficolin is a secretory protein that activates the lectin complement pathway. J Immunol 2005; 175: 3150-3156. .
 
23.
Cisowska A, Tichaczek-Goska D, Goska W. Aktywność przeciwzakaźna ludzkiej lektyny wiążącej mannozę (MBL). Post Mikrobiol 2007; 46: 249-261. .
 
24.
Vander Crussen B, Nuytinck L, Boullart L, et al. Polymorphism in the ficolin 1 gene (FCN1) are associated with susceptibility to the development of rheumatoid arthritis. Rheumatology (Oxford) 2007; 46: 1792-1795. .
 
25.
Karczmarek E, Łukaszewicz J, Lorenc RS. Witamina D – mechanizm działania, badania epidemiologiczne, zasady suplementacji. Stand Med 2007; 4: 169-174. .
 
26.
Maalej A, Petit-Teixeira E, Michou L, et al. Association study of VDR gene with rheumatoid arthritis in the French population. Genes Immun 2005; 6: 707-711. .
 
27.
Gómez-Vaquero C, Fiter J, Enjuanes A, et al. Influence of the BsmI polymorphism of the vitamin D receptor gene on rheumatoid arthritis clinical activity. J Rheum 2007; 34: 1823-1826. .
 
28.
Garcia-Lozano JR, Gonzalez-Escribano MF, Valenzuela A, et al. Association of vitamin D receptor genotypes with early onset rheumatoid arthritis. Eur J Immunogenet 2001; 28: 89-93. .
 
29.
Monsuur AJ, de Bakker PI, Alizadeh BZ, et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet 2005; 37: 1341-1344. .
 
30.
Sánchez E, Alizadeh BZ, Valdigem G, et al. MYOB9 gene polymorphisms are associated with autoimmune diseases in Spanish population. Hum Immunol 2007; 68: 610-615. .
 
31.
Vossenaar E, Zendman AJ, van Venrooij WJ. Citrullination, a possible functional link between susceptibility genes and rheumatoid arthritis. Arthritis Res Ther 2004; 6: 1-5. .
 
32.
Cha S, Choi CB, Han TU, et al. Association of anti-cyclic citrullinated peptide antibody levels with PADI4 haplotypes in early rheumatoid arthritis and with shared epitope alleles in very late rheumatoid arthritis. Arthritis Rheum 2007; 56: 1454-1463. .
 
33.
Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptydylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003; 34: 395-402. .
 
34.
Caponi L, Petit-Teixera E, Sebbag M, et al.; ECRAF. A family based study shows no association between rheumatoid arthritis and the PADI4 gene in a white French population. Ann Rheum Dis 2005; 64: 587-593. .
 
35.
Faragó B, Talián GC, Maász A, et al. Prevalence of functional haplotypes of the peptidylarginine deiminase citrullinating enzyme in patients with rheumatoid arthritis; no influence of the presence of anti-citrullinated peptide antibodies. Clin Exp Rheum 2007; 25: 523-528. .
 
36.
Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRH3, encoding Fc receptor homolog 3, as associated with rheumatoid arthritis and several autoimmunities. Nat Genet 2005; 37: 478-485. .
 
37.
Ikari K, Momohara S, Nakamura T, et al. Supportive evidence for a genetic association of the FCRL3 promoter polymorphism with rheumatoid arthritis. Ann Rheum Dis 2006; 65: 671-673. .
 
38.
Choi CB, Kang CP, Seong SS, et al. The –169C/T polymorphism in FCRL3 is not associated with susceptibility to rheumatoid arthritis or systemic lupus erythematosus in a case-control study of Korean. Arthritis Rheum 2006; 54: 3838-3841. .
 
39.
Eyre S, Bowes J, Potter C, et al. Association of the FCRL3 gene with rheumatoid arthritis: a further example of population specificity? Arthritis Res Ther 2006; 8: R117. .
 
40.
Nelson PN, Hooley P, Roden D, et al. Human endogenous retroviruses: transposable elements with potential? Clin Exp Immunol 2004; 138: 1-9. .
 
41.
Moyes D, Griffiths DJ, Venables P. Insertional polymorphism: a new lease of life for endogenous retroviruses in human disease. Trends Genet 2007; 23: 326-333. .
 
42.
Griffiths DJ, Cooke SP, Hervé C, et al. detection of human retrovirus 5 in patients with arthritis and systemic lupus erythematosus. Arthritis Rheum 1999; 42: 448-454. .
 
43.
Moyes DL, Martin A, Sawcer S, et al. The distribution of the endogenous retroviruses HERV-K113 and HERV-K115 in health and disease. Genomics 2005; 86: 337-341. .
 
44.
Moyes DL, Goris A, Ban M, et al. HERV-K113 is not associated with multiple sclerosis an a large family-based study. AIDS Res Hum Retroviruses 2008; 24: 363-365. .
 
45.
Donn R, Alourfi Z, Benedetti F, et al.; British Paediatrics Rheumatology Study Group. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum 2002; 46: 2402-2409. .
 
46.
Baugh JA, Chitnis S, Donnelly SC, et al. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun 2002; 3: 170-176. .
 
47.
Radstake TR, Sweep FC, Welsing P, et al. Correlation of rheumatoid arthritis severity with the genetic functional variants and circulating levels of macrophage migration inhibitory factor. Arthritis Rheum 2005; 52: 3020-3029. .
 
48.
Chae SC, Song JH, Shim SC, et al. The exon 4 variations of Tim-1 gene are associated with rheumatoid arthritis in a Korean population. Biochem Biophys Res Commun 2004; 315: 971-975. .
 
49.
Chae SC, Park YR, Song JH, et al. The polymorphisms of TIM-1 promoter region are associated with rheumatoid arthritis in Korean population. Immunogenetics 2005; 56: 696-701. .
 
50.
Olsson LM, Lindqvist AK, Källberg H, et al. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis Res Ther 2007; 9: R98. .
 
51.
Hildner KM, Schirmacher P, Atreya I, et al. Targeting of the transcription factor STAT4 by antisense phosphorothioate oligonucleotides suppresses collagen-induced arthritis. J Immunol 2007; 178: 3427-36. .
 
52.
Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977-986. .
 
53.
Tokuhiro S, Yamada R, Chang X, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 2003; 35: 341-348. .
 
54.
Begovich AB, Carlton VEH, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330-337. .
 
55.
Seibl R, Birchler T, Loeliger S, et al. Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 2003; 162: 1221-1227. .
 
56.
Yamada R, Tanaka T, Unoki M, et al. Association between a single-nucleotide polymorphism in the promoter of the human interleukin-3 gene and rheumatoid arthritis in Japanese patients, and maximum-likelihood estimation of combinatorial effect that two genetic loci have on susceptibility to the disease. Am J Hum Genet 2001; 68: 674-685. .
 
57.
Cantagrel A, Navaux F, Loubet-Lescoulié P, et al. Interleukin-1 beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 gene polymorphisms: relationship to occurrence and severity of rheumatoid arthritis. Arthritis Rheum 1999; 42: 1093-1100. .
 
58.
Morling N, Andersen V, Fugger L, et al. Immunogenetics of rheumatoid arthritis and primary Sjögren’s syndrome: DNA polymorphism of HLA class II genes. Dis Markers 1991; 9: 289-296. .
 
59.
Date Y, Seki N, Kamizono S, et al. Identification of a genetic risk factor for systemic juvenile rheumatoid arthritis in the 5’-flanking region of the TNF-αlpha gene and HLA genes. Arthritis Rheum 1999; 42: 2577-2582. .
 
60.
Crilly A, Bartlett JM, White A, et al. Investigation of novel polymorphisms within the 3’ region of the IL-6 gene in patients with rheumatoid arthritis using Genescan analysis. Cytokine 2001; 13: 109-112. .
 
61.
Sigurdsson S, Padyukov L, Kurreeman FA, et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheum 2007; 56: 2202-2210. .
 
62.
Gough A, Sambrook P, Devlin J, et al. Effect of vitamin D receptor gene alleles on bone loss in early rheumatoid arthritis. J Rheumatol 1998; 25: 864-868. .
 
63.
Swanberg M, Lidman O, Padyukov L, et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 2005; 37: 486-494.
 
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
eISSN:2084-9834
ISSN:0034-6233
Journals System - logo
Scroll to top