EN PL
REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Magnetic resonance imaging (MRI) of the musculoskeletal system is an examination increasingly performed for suspected juvenile idiopathic arthritis, chronic nonbacterial osteomyelitis and juvenile idiopathic inflammatory myopathies, as well as other rheumatic diseases of developmental age. T1-, T2- and PD-weighted with or without fat suppression or short tau inversion recovery/turbo inversion recovery magnitude (STIR/TIRM) sequences and post-contrast sequences are evaluated to diagnose pathological changes in the synovial membrane, subchondral bone marrow and surrounding soft tissues. Magnetic resonance imaging allows detection of synovitis, tenosynovitis, bursitis, and enthesitis as well as bone marrow edema and soft tissue edema. Several pediatric-specific MRI scoring systems have been developed and validated to standardize and facilitate the assessment of the extent of the inflammatory process and disease activity in MRI. Early detection of inflammatory changes allows the inclusion of comprehensive pharmacotherapy giving the possibility of permanent remission and objective measurement of the effectiveness of treatment.
 
REFERENCES (87)
1.
Zuber Z, Kania U, Krol-Zdechlikiewicz A, et al. Analysis of clinical symptoms and laboratory profiles in children with juvenile idiopathic arthritis in Malopolska Region (Poland) in the years 2007-2010. Open Access Maced J Med Sci 2014; 2: 56–61, DOI: 10.3889/oamjms.2014.010.
 
2.
Matuszewska G, Zaniewicz-Kaniewska K, Włodkowska-Korytkowska M, et al. Radiological imaging in pediatric rheumatic diseases. Pol Przegl Radiol Med Nukl 2014; 79: 51–58, DOI: 10.12659/pjr.889816.
 
3.
Papadopoulou C, Chew C, Wilkinson MGL, et al. Juvenile idiopathic inflammatory myositis: an update on pathophysiology and clinical care. Nat Rev Rheumatol 2023; 19: 343–362, DOI: 10.1038/s41584-023-00967-9.
 
4.
Teixeira SR, Elias J, Nogueira-Barbosa MH, et al. Whole-body magnetic resonance imaging in children: state of the art. Radiol Bras 2015; 48: 111–120, DOI: 10.1590/0100-3984.2014.0005.
 
5.
Østergaard M, Duer A, Møller UD, Ejbjerg B. Magnetic resonance imaging of peripheral joints in rheumatic diseases. Best Pract Res Clin Rheumatol 2004; 18: 861–879, DOI: 10.1016/j.berh.2004.06.001.
 
6.
Sudoł-Szopińska I, Mróz J, Ostrowska M, Kwiatkowska B. Magnetic resonance imaging in inflammatory rheumatoid diseases. Reumatologia 2016; 54: 170–176, DOI: 10.5114/reum.2016.62471.
 
7.
Narváez JA, Narváez J, De Lama E, De Albert M. MR imaging of early rheumatoid arthritis. Radiographics 2010; 30: 143–163, DOI: 10.1148/rg.301095089.
 
8.
Stomp W, Krabben A, Van Der Heijde D, et al. Aiming for a simpler early arthritis MRI protocol: can Gd contrast administration be eliminated? Eur Radiol 2015; 25: 1520–1527, DOI: 10.1007/s00330-014-3522-1.
 
9.
Eshed I, Krabbe S, Østergaard M, et al. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI – a comparison with contrast-enhanced MRI. Eur Radiol 2014; 25: 1059–1067, DOI: 10.1007/s00330-014-3470-9.
 
10.
Koh D, Collins DJ. Diffusion-Weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 2007; 188: 1622–1635, DOI: 10.2214/ajr.06.1403.
 
11.
Sudoł-Szopińska I, Jurik AG, Eshed I, et al. Recommendations of the ESSR Arthritis Subcommittee for the use of magnetic resonance imaging in musculoskeletal rheumatic diseases. Semin Musculoskelet Radiol 2015; 19: 396–411, DOI: 10.1055/s-0035-1564696.
 
12.
Kraus MS, Coblentz AC, Deshpande VS, et al. State-of-the-art magnetic resonance imaging sequences for pediatric body imaging. Pediatr Radiol 2023; 53: 1285–1299, DOI: 10.1007/s00247-022-05528-y.
 
13.
Zaripova LN, Midgley A, Christmas SE, et al. Juvenile idiopathic arthritis: from aetiopathogenesis to therapeutic approaches. Pediatr Rheumatol 2021; 19: 135, DOI: 10.1186/s12969-021-00629-8.
 
14.
Barut K, Adroviç A, Şahin S, Kasapçopur Ö. Juvenile idiopathic arthritis. Balkan Med J 2017; 34: 90–101, DOI: 10.4274/balkanmedj.2017.0111.
 
15.
Dimitriou C, Boitsios G, Badot V et al. Imaging of juvenile idio­pathic arthritis. Radiol Clin North Am 2017; 55: 1071–1083, DOI: 10.1016/j.rcl.2017.04.011.
 
16.
Sudoł-Szopińska I, Herregods N, Doria AS, et al. Advances in musculoskeletal imaging in juvenile idiopathic arthritis. Biomedicines 2022; 10: 2417, DOI: 10.3390/biomedicines10102417.
 
17.
Kirkhus E, Flatø B, Riise ØR, et al. Differences in MRI findings between subgroups of recent-onset childhood arthritis. Pediatr Radiol 2010; 41: 432–440, DOI: 10.1007/s00247-010-1897-y.
 
18.
Panwar J, Tolend M, Redd B, et al. Consensus-driven conceptual development of a standardized whole body-MRI scoring system for assessment of disease activity in juvenile idiopathic arthritis: MRI in JIA OMERACT working group. Semin Arthritis Rheum 2021; 51: 1350–1359, DOI: 10.1016/j.semarthrit.2021.07.017.
 
19.
Hemke R, van Rossum MAJ, Van Veenendaal M, et al. Reliability and responsiveness of the Juvenile Arthritis MRI Scoring (JAMRIS) system for the knee. Eur Radiol 2012; 23: 1075–1083, DOI: 10.1007/s00330-012-2684-y.
 
20.
Hemke R, Nusman CM, Van Der Heijde DMFM, et al. Frequency of joint involvement in juvenile idiopathic arthritis during a 5-year follow-up of newly diagnosed patients: implications for MR imaging as outcome measure. Rheumatol Int 2014; 35: 351–357, DOI: 10.1007/s00296-014-3108-x.
 
21.
Koos B, Tzaribachev N, Bott SM, et al. Classification of temporomandibular joint erosion, arthritis, and inflammation in patients with juvenile idiopathic arthritis. J Orofac Orthop 2013; 74: 506–519, DOI: 10.1007/s00056-013-0166-8.
 
22.
Vaid YN, Dunnavant FD, Royal SA, et al. Imaging of the temporomandibular joint in juvenile idiopathic arthritis. Arthritis Care Res (Hoboken) 2013; 66: 47–54, DOI: 10.1002/acr.22177.
 
23.
Kellenberger CJ, Bucheli J, Schroeder-Kohler S, et al. Temporomandibular joint magnetic resonance imaging findings in adolescents with anterior disk displacement compared to those with juvenile idiopathic arthritis. J Oral Rehabil 2018; 46: 14–22, DOI: 10.1111/joor.12720.
 
24.
Tolend M, Twilt M, Cron RQ, et al. Toward establishing a standardized magnetic resonance imaging scoring system for temporomandibular joints in juvenile idiopathic arthritis. Arthritis Care Res (Hoboken) 2018; 70: 758–767, DOI: 10.1002/acr.23340.
 
25.
Tolend M, Doria AS, Meyers AB, et al. Assessing the reliability of the OMERACT Juvenile Idiopathic Arthritis Magnetic Resonance Scoring System for Temporomandibular Joints (JAMRIS-TMJ). J Clin Med 2021; 10: 4047, DOI: 10.3390/jcm10184047.
 
26.
Pracoń G, Gómez MPA, Simoni P, et al. Conventional radiography and ultrasound imaging of rheumatic diseases affecting the pediatric population. Semin Musculoskele Radiol 2021; 25: 68–81, DOI: 10.1055/s-0041-1726014.
 
27.
Hemke R, Herregods N, Jaremko JL, et al. Imaging assessment of children presenting with suspected or known juvenile idiopathic arthritis: ESSR-ESPR points to consider. Eur Radiol 2020; 30: 5237–5249, DOI: 10.1007/s00330-020-06807-8.
 
28.
Laiho K, Savolainen A, Kautiainen H, et al. The cervical spine in juvenile chronic arthritis. Spine J 2002; 2: 89–94, DOI: 10.1016/s1529-9430(02)00151-1.
 
29.
Hospach T, Maier J, Müller-Abt P, et al. Cervical spine involvement in patients with juvenile idiopathic arthritis – MRI follow-up study. Pediatr Rheumatol Online J 2014; 12: 9, DOI: 10.1186/1546-0096-12-9.
 
30.
Ključevšek D, Emeršič N, Toplak N, Avčin T. Clinical and MRI outcome of cervical spine lesions in children with juvenile idiopathic arthritis treated with anti-TNF drugs early in disease course. Pediatr Rheumatol Online J 2017; 15: 38, DOI: 10.1186/s12969-017-0173-1.
 
31.
Munir S, Patil K, Miller E, et al. Juvenile idiopathic arthritis of the axial joints: a systematic review of the diagnostic accuracy and predictive value of conventional MRI. AJR Am J Roentgenol 2014; 202: 199–210, DOI: 10.2214/ajr.12.10475.
 
32.
Kotecki M, Gietka P, Posadzy M, Sudoł-Szopińska I. Radiographs and MRI of the cervical spine in juvenile idiopathic arthritis: a cross-sectional retrospective study. J Clin Med 2021; 10: 5798, DOI: 10.3390/jcm10245798.
 
33.
Herregods N, Jans L, Chen M, et al. Normal subchondral high T2 signal on MRI mimicking sacroiliitis in children: frequency, age distribution, and relationship to skeletal maturity. Eur Radiol 2020; 31: 3498–3507, DOI: 10.1007/s00330-020-07328-0.
 
34.
Chauvin NA, Xiao R, Brandon TG, et al. MRI of the sacroiliac joint in healthy children. AJR Am J Roentgenol 2019; 212: 1303–1309, DOI: 10.2214/ajr.18.20708.
 
35.
Weiss PF, Brandon TG, Bohnsack JF, et al. Variability in interpretation of magnetic resonance imaging of the pediatric sacroiliac joint. Arthritis Care Res (Hoboken) 2021; 73: 841–848, DOI: 10.1002/acr.24206.
 
36.
Herregods N, Lambert RG, Schiettecatte E, et al. Blurring and irregularity of the subchondral cortex in pediatric sacroiliac joints on T1 images: incidence of normal findings that can mi­mic erosions. Arthritis Care Res (Hoboken) 2022; 75: 190–197, DOI: 10.1002/acr.24746.
 
37.
Rudwaleit M, Jurik AG, Hermann KGA, et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann Rheum Dis 2009; 68: 1520–1527, DOI: 10.1136/ard.2009.110767.
 
38.
Maksymowych WP, Lambert RG, Østergaard M, et al. MRI lesions in the sacroiliac joints of patients with spondylo­arthritis: an update of definitions and validation by the ASAS MRI working group. Ann Rheum Dis 2019; 78: 1550–1558, DOI: 10.1136/annrheumdis-2019-215589.
 
39.
Lambert RG, Bakker P, Van Der Heijde D, et al. Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis 2016; 75: 1958–1963, DOI: 10.1136/annrheumdis-2015-208642.
 
40.
Herregods N, Maksymowych WP, Jans L, et al. Atlas of MRI findings of sacroiliitis in pediatric sacroiliac joints to accompany the updated preliminary OMERACT pediatric JAMRIS (Juvenile Idiopathic Arthritis MRI Score) scoring system: Part II: Structural damage lesions. Semin Arthritis Rheum 2021; 51: 1099–1107, DOI: 10.1016/j.semarthrit.2021.07.009.
 
41.
Otobo TM, Conaghan PG, Maksymowych WP, et al. Preliminary Definitions for sacroiliac joint pathologies in the OMERACT Juvenile Idiopathic Arthritis Magnetic Resonance Imaging Score (OMERACT JAMRIS-SIJ). J Rheumatol 2019; 46: 1192–1197, DOI: 10.3899/jrheum.181115.
 
42.
Otobo TM, Herregods N, Jaremko JL, et al. Reliability of the preliminary OMERACT Juvenile Idiopathic Arthritis MRI Score (OMERACT JAMRIS-SIJ). J Clin Med 2021; 10: 4564, DOI: 10.3390/jcm10194564.
 
43.
Müller LSO, Boavida P, Avenarius D, et al. MRI of the wrist in juvenile idiopathic arthritis: erosions or normal variants? A prospective case-control study. Pediatr Radiol 2013; 43: 785–795, DOI: 10.1007/s00247-012-2575-z.
 
44.
Østergaard M, Edmonds J, McQueen F, et al. An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Reum Dis 2005; 64 (suppl_1): i3–i7, DOI: 10.1136/ard.2004.031773.
 
45.
Østergaard M, Peterfy C, Conaghan PG, et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 2003; 30: 1385–1386.
 
46.
Müller LSO, Avenarius D, Damasio MB, et al. The paediatric wrist revisited: redefining MR findings in healthy children. Ann Reum Dis 2010; 70: 605–610, DOI: 10.1136/ard.2010.135244.
 
47.
Avenarius D, Nusman CM, Malattia C, et al. Current status of wrist imaging in juvenile idiopathic arthritis. Pediatr Radiol 2018; 48: 801–810, DOI: 10.1007/s00247-017-4063-y.
 
48.
Ostrowska M, Michalski E, Gietka P, et al. Ankle magnetic re­sonance imaging in juvenile idiopathic arthritis versus non-juvenile idiopathic arthritis patients with arthralgia. J Clin Med 2022; 11: 760, DOI: 10.3390/jcm11030760.
 
49.
Onel K, Horton DB, Lovell DJ, et al. 2021 American College of Rheumatology guideline for the treatment of juvenile idio­pathic arthritis: therapeutic approaches for oligoarthritis, temporomandibular joint arthritis, and systemic juvenile idio­pathic arthritis. Arthritis Rheumatol 2022; 74: 553–569, DOI: 10.1002/art.42037.
 
50.
Beukelman T, Patkar NM, Saag KG, et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res (Hoboken) 2011; 63: 465–482, DOI: 10.1002/acr.20460.
 
51.
McErlane F, Beresford MW, Baildam E, et al. Recent developments in disease activity indices and outcome measures for juvenile idiopathic arthritis. Rheumatology 2013; 52: 1941–1951, DOI: 10.1093/rheumatology/ket150.
 
52.
Wallace CA, Giannini EH, Huang B, et al. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res (Hoboken) 2011; 63: 929–936, DOI: 10.1002/acr.20497.
 
53.
Malattia C, Consolaro A, Pederzoli S, et al. MRI versus conventional measures of disease activity and structural damage in evaluating treatment efficacy in juvenile idiopathic arthritis. Ann Rheum Dis 2012; 72: 363–368, DOI: 10.1136/annrheumdis-2011-201049.
 
54.
Hofmann SR, Schnabel A, Rösen-Wolff A, et al. Chronic nonbacterial osteomyelitis: pathophysiological concepts and current treatment strategies. J Rheumatol 2016; 43: 1956–1964, DOI: 10.3899/jrheum.160256.
 
55.
Hofmann SR, Kapplusch F, Girschick H, et al. Chronic recurrent multifocal osteomyelitis (CRMO): presentation, pathogenesis, and treatment. Curr Osteoporos Rep 2017; 15: 542–554, DOI: 10.1007/s11914-017-0405-9.
 
56.
Yousaf A, Muhammad S, Zoghoul S, et al. Chronic recurrent multifocal osteomyelitis and its management. Cureus 2021; 13: e18872, DOI: 10.7759/cureus.18872.
 
57.
Von Kalle T, Heim N, Hospach T, et al. Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). RöFo 2013; 185: 655–661, DOI: 10.1055/s-0033-1335283.
 
58.
Nico MAC, Araújo FF, Guimarães JB, et al. Chronic nonbacterial osteomyelitis: the role of whole-body MRI. Insights Imaging 2022; 13: 149, DOI: 10.1186/s13244-022-01288-3.
 
59.
Taddio A, Ferrara G, Insalaco A, et al. Dealing with chronic non-bacterial osteomyelitis: a practical approach. Pediatr Rheumatol Online J 2017; 15: 87, DOI: 10.1186/s12969-017-0216-7.
 
60.
Roderick M, Shah R, Finn A, Ramanan AV. Efficacy of pamidronate therapy in children with chronic non-bacterial osteitis: disease activity assessment by whole body magnetic resonance imaging. Rheumatology 2014; 53: 1973–1976, DOI: 10.1093/rheumatology/keu226.
 
61.
Rider LG, Nistala K. The juvenile idiopathic inflammatory myo­pathies: pathogenesis, clinical and autoantibody phenotypes, and outcomes. J Int Med 2016; 280: 24–38, DOI: 10.1111/joim.12444.
 
62.
Pachman LM, Nolan BE, DeRanieri D, Khojah A. Juvenile dermatomyositis: new clues to diagnosis and therapy. Curr Treatm Opt Rheumatol 2021; 7: 39–62, DOI: 10.1007/s40674-020-00168-5.
 
63.
Lundberg IE, Tjärnlund A, Bottai M, et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann Rheum Dis 2017; 76: 1955–1964, DOI: 10.1136/annrheumdis-2017-211468.
 
64.
Ernste FC, Reed AM. Idiopathic inflammatory myopathies: current trends in pathogenesis, clinical features, and up-to-date treatment recommendations. Mayo Clin Proc 2013; 88: 83–105, DOI: 10.1016/j.mayocp.2012.10.017.
 
65.
Walker UA. Imaging tools for the clinical assessment of idiopathic inflammatory myositis. Curr Opin Rheumatol 2008; 20: 656–661, DOI: 10.1097/bor.0b013e3283118711.
 
66.
Sudoł-Szopińska I, Jacques T, Gietka P, Cotten A. Imaging in dermatomyositis in adults and children. J Ultrason 2020; 20: e36–e42, DOI: 10.15557/jou.2020.0007.
 
67.
Malartre S, Bachasson D, Mercy G, et al. MRI and muscle imaging for idiopathic inflammatory myopathies. Brain Pathology 2021; 31: e12954, DOI: 10.1111/bpa.12954.
 
68.
Malattia C, Damasio MB, Madeo A, et al. Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis 2013; 73: 1083–1090, DOI: 10.1136/annrheumdis-2012-202915.
 
69.
Rutkowska-Sak L, Gietka P, Gazda A, Kołodziejczyk B. Juvenile systemic sclerosis – observations of one clinical centre. Reumatologia 2021; 59: 367–372, DOI: 10.5114/reum.2021.112350.
 
70.
Zulian F, Woo P, Athreya BH, et al. The Pediatric Rheumatology European Society/American College of Rheumatology/European League against Rheumatism provisional classification criteria for juvenile systemic sclerosis. Arthritis Care Res 2007; 57: 203–212, DOI: 10.1002/art.22551.
 
71.
Idzior M, Sotniczuk M, Michalski E, et al. Ultrasonography, MRI and classic radiography of skin and MSK involvement in juvenile scleroderma. J Ultrason 2020; 20: 311–317, DOI: 10.15557/jou.2020.0054.
 
72.
Silva CA. Childhood-onset systemic lupus erythematosus: early disease manifestations that the paediatrician must know. Exp Rev Clin Immunol 2016; 12: 907–910, DOI: 10.1080/1744666x.2016.1195685.
 
73.
Silva CA, Aikawa NE, Pereira RMR, Campos LMA. Management considerations for childhood-onset systemic lupus erythematosus patients and implications on therapy. Exp Rev Clin Immunol 2015; 12: 301–313, DOI: 10.1586/1744666x.2016.1123621.
 
74.
Sudoł-Szopińska I, Żelnio E, Olesińska M, et al. Update on current imaging of systemic lupus erythematous in adults and juveniles. J Clin Med 2022; 11: 5212, DOI: 10.3390/jcm11175212.
 
75.
Natoli V, Charras A, Hahn G, Hedrich CM. Neuropsychiatric involvement in juvenile-onset systemic lupus erythematosus (jSLE). Mol Cell Pediatr 2023; 10: 5, DOI: 10.1186/s40348-023-00161-7.
 
76.
Al-Obaidi M, Saunders D, Brown S, et al. Evaluation of magnetic resonance imaging abnormalities in juvenile onset neuro­psychiatric systemic lupus erythematosus. Clin Rheumatol 2016; 35: 2449–2456, DOI: 10.1007/s10067-016-3376-9.
 
77.
Ainiala H, Dastidar P, Loukkola J, et al. Cerebral MRI abnormalities and their association with neuropsychiatric manifestations in SLE: a population-based study. Scand J Rheumatol 2005; 34: 376–382, DOI: 10.1080/03009740510026643.
 
78.
Groot N, De Graeff N, Marks SD, et al. European evidence-based recommendations for the diagnosis and treatment of childhood-onset lupus nephritis: the SHARE initiative. Ann Rheum Dis 2017; 76: 1965–1973, DOI: 10.1136/annrheumdis-2017-211898.
 
79.
Trindade V, Carneiro-Sampaio M, Bonfá E, Silva CA. An update on the management of childhood-onset systemic lupus erythematosus. Pediatric Drugs 2021; 23: 331–347, DOI: 10.1007/s40272-021-00457-z.
 
80.
Bressem KK, Vahldiek JL, Adams LC, et al. Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance. Arthritis Res Ther 2021; 23: 106, DOI: 10.1186/s13075-021-02484-0.
 
81.
Zarco P, Almodóvar R, Bueno Á, Molinero LM. Development and validation of SCAISS, a tool for semi-automated quantification of sacroilitis by magnetic resonance in spondyloarthritis. Rheumatology Int 2018; 38: 1919–1926, DOI: 10.1007/s00296-018-4104-3.
 
82.
Rzecki K, Kucybała I, Gut D, et al. Fully automated algorithm for the detection of bone marrow oedema lesions in patients with axial spondyloarthritis – feasibility study. Biocybernetics and Biomedical Engineering 2021; 41: 833–853, DOI: 10.1016/j.bbe.2021.05.005.
 
83.
Fabry V, Mamalet F, Laforet A, et al. A deep learning tool without muscle-by-muscle grading to differentiate myositis from facio-scapulo-humeral dystrophy using MRI. Diagn Interv Imaging 2022; 103: 353–359, DOI: 10.1016/j.diii.2022.01.012.
 
84.
Goo HW. Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol 2015; 16: 973–985, DOI: 10.3348/kjr.2015.16.5.973.
 
85.
Karian VE, Burrows PE, Zurakowski D, et al. The development of a pediatric radiology sedation program. Pediatr Radiol 2002; 32: 348–353, DOI: 10.1007/s00247-001-0653-8.
 
86.
Jaimes C, Gee MS. Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 2016; 46: 916–927, DOI: 10.1007/s00247-016-3613-z.
 
87.
Harrington SG, Jaimes C, Weagle KM, et al. Strategies to perform magnetic resonance imaging in infants and young children without sedation. Pediatr Radiol 2022; 52: 374–381, DOI: 10.1007/s00247-021-05062-3.
 
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
eISSN:2084-9834
ISSN:0034-6233
Journals System - logo
Scroll to top