EN PL
CASE-BASED REVIEW
 
KEYWORDS
TOPICS
ABSTRACT
Hyperuricemia, characterized by elevated levels of uric acid in the body, is associated with several health risks, including gout, urolithiasis and cardiovascular disease. Although treatment options are available, they can lead to hypersensitivity reactions, particularly with allopurinol therapy. This paper provides a comprehensive review of the consequences of hyperuricemia, the need for treatment and the potential adverse effects of allopurinol, illustrated by a case study. The study highlights the importance of careful consideration before initiating therapy, particularly in patients with comorbidi­ties and concomitant medication. It emphasizes the need for vigilant monitoring and individualized treatment approaches to reduce adverse effects. In addition, genetic factors, particularly HLA-B*5801, play an important role in determining susceptibility to allopurinol hypersensitivity reactions. This paper highlights the importance of informed decision making in the management of hyperuricemia to optimize patient outcomes while minimizing the risks associated with treatment.
 
REFERENCES (61)
1.
Kuwabara M. Hyperuricemia, cardiovascular disease, and hyper­tension. Pulse 2015; 3: 242–252, DOI: 10.1159/000443769.
 
2.
Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014; 371: 58–66, DOI: 10.1056/NEJMra1214243.
 
3.
Hahn K, Kanbay M, Lanaspa MA, Jet al. Serum uric acid and acute kidney injury: a mini review. J Adv Res 2017; 8: 529–536, DOI: 10.1016/j.jare.2016.09.006.
 
4.
Conger JD. Acute uric acid nephropathy. Med Clin North Am 1990; 74: 859–871, DOI: 10.1016/S0025-7125(16)30522-3.
 
5.
Xu X, Hu J, Song N, et al. Hyperuricemia increases the risk of acute kidney injury: a systematic review and meta-analysis. BMC Nephrol 2017; 18: 27, DOI: 10.1186/s12882-016-0433-1.
 
6.
Ma G, Wang G, Xiao D, et al. Meta-analysis on allopurinol preventive intervention on contrast-induced acute kidney injury with random controlled trials. Medicine (Baltimore) 2019; 98: e15962, DOI: 10.1097/MD.0000000000015962.
 
7.
Kalantar-Zadeh K, Jafar TH, Nitsch D, et al. Chronic kidney disease. Lancet 2021; 398: 786–802, DOI: 10.1016/S0140-6736(21)00519-5.
 
8.
Niewczas MA, Pavkov ME, Skupien J, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med 2019; 25: 805–813, DOI: 10.1038/s41591-019-0415-5.
 
9.
Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017; 389: 1238–1252, DOI: 10.1016/S0140-6736(16)32064-5.
 
10.
Oh TR, Choi HS, Kim CS, et al. Hyperuricemia has increased the risk of progression of chronic kidney disease: propensity score matching analysis from the KNOW-CKD study. Sci Rep 2019; 9: 6681, DOI: 10.1038/s41598-019-43241-3.
 
11.
Tsai CW, Chiu HT, Huang HC, et al. Uric acid predicts adverse outcomes in chronic kidney disease: a novel insight from trajectory analyses. Nephrol Dial Transplant 2018; 33: 231–241, DOI: 10.1093/ndt/gfx297.
 
12.
Ali I, Kalra P. Risk prediction in chronic kidney disease. Curr Opin Nephrol Hypertens 2019; 28: 513–518, DOI: 10.1097/MNH.0000000000000553.
 
13.
Muszyński P, Dąbrowski EJ, Pasławska M, et al. Hyperuricemia as a risk factor in hypertension among patients with very high cardiovascular risk. Healthcare (Basel) 2023; 11: 2460, DOI: 10.3390/healthcare11172460.
 
14.
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 2013; 62: 3307–3315, DOI: 10.2337/db12-1814.
 
15.
Yip K, Cohen RE, Pillinger MH. Asymptomatic hyperuricemia: is it really asymptomatic? Curr Opin Rheumatol 2020; 32: 71–79, DOI: 10.1097/BOR.0000000000000679.
 
16.
Lee JJ, Ahn J, Hwang J, et al. Relationship between uric acid and blood pressure in different age groups. Clin Hypertens 2015; 21: 14, DOI: 10.1186/s40885-015-0022-9.
 
17.
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21: 6275, DOI: 10.3390/ijms21176275.
 
18.
Griffiths M. The mechanism of the diabetogenic action of uric acid. J Biol Chem 1950; 184: 289–298.
 
19.
Singh SK, Singh R, Singh SK, et al. Uric acid and diabetes mellitus: an update. Postgrad Med J 2023; 99: 1220–1225, DOI: 10.1093/postmj/qgad081.
 
20.
Krishnan E, Pandya BJ, Chung L, et al. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol 2012; 176: 108–116, DOI: 10.1093/aje/kws002.
 
21.
Kodama S, Saito K, Yachi Y, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care 2009; 32: 1737–1742, DOI: 10.2337/dc09-0288.
 
22.
Lv Q, Meng XF, He FF, et al. High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One 2013; 8: e56864, DOI: 10.1371/journal.pone.0056864.
 
23.
Ye X, Cao Y, Gao F, et al. Elevated serum uric acid levels are independent risk factors for diabetic foot ulcer in female C hinese patients with type 2 diabetes. J Diabetes 2014; 6: 42–47, DOI: 10.1111/1753-0407.12079.
 
24.
Chuengsamarn S, Rattanamongkolgul S, Jirawatnotai S. Association between serum uric acid level and microalbuminuria to chronic vascular complications in Thai patients with type 2 diabetes. J Diabetes Complications 2014; 28: 124–129, DOI: 10.1016/j.jdiacomp.2013.12.002.
 
25.
Dincer HE, Dincer AP, Levinson DJ. Asymptomatic hyperuricemia: to treat or not to treat. Cleve Clin J Med 2002; 69: 594–594, DOI: 10.3949/ccjm.69.8.594.
 
26.
Lanaspa MA, Andres-Hernando A, Kuwabara M. Uric acid and hypertension. Hypertension Res 2020; 43: 832–834, DOI: 10.1038/s41440-020-0481-6.
 
27.
Park JH, Jo YI, Lee JH. Renal effects of uric acid: hyperuricemia and hypouricemia. Korean J Intern Med 2020; 35: 1291–1304, DOI: 10.3904/kjim.2020.410.
 
28.
Hainer BL, Matheson E, Wilkes RT. Diagnosis, treatment, and prevention of gout. Am Fam Physician 2014; 90: 831–836.
 
29.
Matsumura K, Arima H, Tominaga M, et al. Effect of losartan on serum uric acid in hypertension treated with a diuretic: the COMFORT study. Clin Exp Hypertens 2015; 37: 192–196, DOI: 10.3109/10641963.2014.933968.
 
30.
Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42: 3227–3337, DOI: 10.1093/eurheartj/ehab484.
 
31.
Muszyński P, Dąbrowski EJ, Pasławska M, et al. Hyperuricemia as a risk factor in hypertension among patients with very high cardiovascular risk. Healthcare 2023; 11: 2460, DOI: 10.3390/healthcare11172460.
 
32.
Borghi C, Domienik-Karłowicz J, Tykarski A, et al. Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk: 2021 update. Cardiol J 2021; 28: 1–14, DOI: 10.5603/CJ.a2021.0001.
 
33.
Drzewiecka K, Suliburska J. Dietoterapia skazy moczanowej. Forum Zaburzeń Metabolicznych 2012; 3: 125–129.
 
34.
Toprover M, Crittenden DB, Modjinou DV, et al. Low-dose allopurinol promotes greater serum urate lowering in gout patients with chronic kidney disease compared with normal kidney function. Bull Hosp Jt Dis (2013) 2019; 77: 87–91.
 
35.
Frampton JE. Febuxostat: a review of its use in the treatment of hyperuricaemia in patients with gout. Drug 2015; 75: 427–438, DOI: 10.1007/s40265-015-0360-7.
 
36.
Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, et al. Uric acid and hypertension: an update with recommendations. Am J Hypertens 2020; 33: 583–594, DOI: 10.1093/ajh/hpaa044.
 
37.
Qurie A, Preuss CV, Musa R. Allopurinol. In: StatPearls [Internet]. Treasure Island (FL): StatPearls; 2023.
 
38.
Stamp LK, Day RO, Yun J. Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat Rev Rheumatol 2016; 12: 235–242, DOI: 10.1038/nrrheum.2015.132.
 
39.
Gupta SS, Sabharwal N, Patti R, Kupfer Y. Allopurinol-induced Stevens-Johnson syndrome. Am J Med Sci 2019; 357: 348–351, DOI: 10.1016/j.amjms.2018.11.018.
 
40.
Liotti L, Caimmi S, Bottau P, et al. Clinical features, outcomes and treatment in children with drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis. Acta Biomed 2019; 90(3-S): 52–60, DOI: 10.23750/abm.v90i3-S.8165.
 
41.
Oakley AM, Krishnamurthy K. Stevens-Johnson syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
 
42.
Halevy S, Ghislain PD, Mockenhaupt M, et al. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J Am Acad Dermatol 2008; 58: 25–32, DOI: 10.1016/j.jaad.2007.08.036.
 
43.
Stamp LK, Chapman PT. Allopurinol hypersensitivity: pathogenesis and prevention. Best Pract Res Clin Rheumatol 2020; 34: 101501, DOI: 10.1016/j.berh.2020.101501.
 
44.
Levi N, Bastuji-Garin S, Mockenhaupt M, et al. Medications as risk factors of Stevens-Johnson syndrome and toxic epidermal necrolysis in children: a pooled analysis. Pediatrics 2009; 123: e297-e304, DOI: 10.1542/peds.2008-1923.
 
45.
Sekula P, Dunant A, Mockenhaupt M, et al. Comprehensive survival analysis of a cohort of patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. J Investig Dermatol 2013; 133: 1197–1204, DOI: 10.1038/jid.2012.510.
 
46.
Krajewski A, Maciejewska-Markiewicz D, Jakubczyk K, et al. Impact of multiple medical interventions on mortality, length of hospital stay and reepithelialization time in toxic epidermal necrolysis, Steven-Johnsons syndrome, and TEN/SJS overlap – metanalysis and metaregression of observational studies. Burns 2022; 48: 263–280, DOI: 10.1016/j.burns.2021.11.004.
 
47.
Harr T, French LE. Toxic epidermal necrolysis and Stevens-Johnson syndrome. Orphanet J Rare Dis 2010; 5: 39, DOI: 10.1186/1750-1172-5-39.
 
48.
Husain Z, Reddy BY, Schwartz RA. DRESS syndrome. J Am Acad Dermatol 2013; 68: 693.e1–693.e14, DOI: 10.1016/j.jaad.2013.01.033.
 
49.
Okruszko A, Baran A, Zwierz-Gugała D, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS syndrome) – case report. Dermatol Rev/Przegl Dermatol 2013; 100: 31–35.
 
50.
Stamp LK, Barclay ML. How to prevent allopurinol hypersensitivity reactions? Rheumatology 2018; 57 (Suppl1): i35–i41, DOI: 10.1093/rheumatology/kex422.
 
51.
Schweitzer I. Anticonvulsant hypersensitivity syndrome: a rare and serious complication. Med J Australia 2011; 194: 609–610, DOI: 10.5694/j.1326-5377.2011.tb03118.x.
 
52.
Khanna D, Fitzgerald JD, Khanna PP, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) 2012; 64: 1431–1446, DOI: 10.1002/acr.21772.
 
53.
Hung SI, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proceed Natl Acad Sci 2005; 102: 4134–4139, DOI: 10.1073/pnas.0409500102.
 
54.
Jarjour S, Barrette M, Normand V, et al. Genetic markers associated with cutaneous adverse drug reactions to allopurinol: a systematic review. Pharmacogenomics 2015; 16: 755–767, DOI: 10.2217/pgs.15.21.
 
55.
Ng CY, Yeh YT, Wang CW, et al. Impact of the HLA-B58: 01 Allele and renal impairment on allopurinol-induced cutaneous adverse reactions. J Investig Dermatol 2016; 136: 1373–1381, DOI: 10.1016/j.jid.2016.02.808.
 
56.
Lonjou C, Borot N, Sekula P, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008; 18: 99–107, DOI: 10.1097/FPC.0b013e3282f3ef9c.
 
57.
Kaniwa N, Saito Y, Aihara M, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmaco­genomics 2008; 9: 1617–1622, DOI: 10.2217/14622416.9.11.1617.
 
58.
Ubukata N, Nakatani E, Hashizume H, et al. Risk factors and drugs that trigger the onset of Stevens-Johnson syndrome and toxic epidermal necrolysis: a population-based cohort study using the Shizuoka Kokuho database. JAAD Int 2022; 11: 24–32, DOI: 10.1016/j.jdin.2022.12.002.
 
59.
Gronich N, Maman D, Stein N, Saliba W. Culprit medications and risk factors associated with Stevens-Johnson syndrome and toxic epidermal necrolysis: population-based nested case-control study. Am J Clin Dermatol 2022; 23: 257–266, DOI: 10.1007/s40257-021-00661-0.
 
60.
Anis TR, Meher J. Allopurinol-induced Stevens-Johnson syndrome (SJS). Clin Pharmacol 2023; 15: 99–105, DOI: 10.2147/CPAA.S427714.
 
61.
Chiu ML, Hu M, Ng MH, et al. Association between HLA-B*58:01 allele and severe cutaneous adverse reactions with allopurinol in Han Chinese in Hong Kong. Br J Dermatol 2012; 167: 44–49, DOI: 10.1111/j.1365-2133.2012.10894.x.
 
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
eISSN:2084-9834
ISSN:0034-6233
Journals System - logo
Scroll to top