REVIEW PAPER
Intestinal microbiota transplant – current state of knowledge
More details
Hide details
Submission date: 2016-02-29
Acceptance date: 2016-03-01
Online publication date: 2016-03-24
Publication date: 2016-02-29
Reumatologia 2016;54(1):24-28
KEYWORDS
TOPICS
ABSTRACT
Faecal microbiota transplantation (FMT) has induced a lot scientific interest and hopes for the last couple of years. FMT has been approved as a treatment of recurrent Clostridium difficile colitis. Highly sophisticated molecular DNA identification methods have been used to assess the healthy human microbiome as well as its disturbances in several diseases. The metabolic and immunologic functions of the microbiome have become more clear and understandable. A lot of pathological changes, such as production of short-chain fatty acids or components of the inflammatory cascade, caused by changes in microbiome diversity, variability and richness have been observed among patients suffering from inflammatory bowel diseases, irritable bowel syndrome, type 2 diabetes or rheumatoid arthritis. The published clinical results are encouraging, but still there is huge demand for FMT controlled clinical trials.
REFERENCES (45)
1.
Cammarota G, Ianitro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection. A systematic review. J Clin Gastroenterol 2014; 48: Suppl. 1: S80-S84.
2.
Rahier JF, Maga F, Abreu C, et al. Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel diseases. J Crohns Colitis 2014; 8: 443-468.
3.
Yatsusenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222-227.
4.
Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability and temporal stability of the intestinal microbiota in the elderly. Proc Natl Acad Sci U S A 2011; 108: 4586-4591.
5.
Tyakht AV, Alexeev DG, Popenko AS, et al. Rural and urban microbiota. Gut Microbes 2014; 3: 1-6.
6.
Biasucci G, Benenati B, Morelli L, et al. Cesarean delivery may affect the early biodiversity of the intestinal bacteria. J Nutr 2008; 138: 1796S-1800S.
7.
Sella DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 2010; 18: 298-307.
8.
De Filipo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107: 14691-14696.
9.
Dethlefsen L, Huse S, Sogin ML, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6: e280.
10.
Fung TC, Artis D, Sonnenberg GF. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev 2014; 260: 35-49.
11.
Davila AM, Blachier F, Gotteland M, et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 2013; 68: 95-107.
12.
Vollard EJ, Clasener HAL. Colonisation resistance. Antimicrob Agents Chemiother 1994; 38: 409-414.
13.
Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220-230.
14.
Moore-Connors JM, Dunn KA, Bielawski JP, et al. Novel strategies for applied metagenomics. Inflamm Bowel Dis 2015; 22: 709-718.
15.
Wang Y, Qian PY. Conservative fragments in bacterial 16S rRNA genes and primer design for 16A ribosomal SNA amplicons in metagenomic studies. PLoS One 2009; 4: e7401.
16.
Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Phils Trans R Soc Lond B Biol Sci 2006; 361: 1929-1940.
17.
Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915-1920.
18.
Sommer F, Backhed F. The gut microbiota: masters of host development and physiology. Nat Rev Microbiol 2013; 11: 227-238.
19.
Richard ML, Lamas B, Liquori G, et al. Gut fungal microbiota: The Yin and Yang of inflammatory bowel disease. Inflamm Bowel Dis 2015; 21: 656-665.
20.
Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 2004; 7: 336-341.
21.
Kuhbacher T, Ott SJ, Helwig U, et al. Bacterial and fungal microbiota in relations to probiotic therapy (VLS#3) in pouchitis. Gut 2006; 55: 1183-1193.
22.
Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-Type lectin receptor dectin-1 influence colitis. Science 2012; 336: 1314-1317.
23.
Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 2013; 8: e66019.
24.
Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: episodic variations and proliferation during antibiotic treatment. PLoS One 2013; 19: e71806.
25.
Quinton JF, Sendid B, Reumaux D, et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 1998; 42: 788-791.
26.
Nagatani K, Wang S, Llado V, et al. Chitin microparticles for the control of intestinal inflammation. Inflamm Bowel Dis 2012; 18: 1698-1710.
27.
Rizzetto L, Ifrim DC, Moretti S, et al. Fungal chitin induces training immunity in human monocytes during cross-talk of the host with Saccharomyces cerevisiae. J Biol Chem 2016 Feb 17. pii: jbc.M115.699645.
28.
Damman CJ, Miller SI, Surawicz CM, et al. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol 2012; 107: 1452-1459.
29.
Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014; 63: 1275-1283.
30.
Tedelind S, Westberg F, Kjerrulf M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 2007; 13: 2826-2832.
31.
Rossen NG, McDonald JK, deVries EM, et al. Faecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World J Gastroenterol 2015; 21: 5359-5371.
32.
Vermeire S, Joossens M, Verbeke K. Donor species richness determines faecal microbiota transplantation success in inflammatory bowel disease. J Crohns Colitis 2015 Oct 29. pii: jjv203 (ahead of publication ).
33.
Chassard C, Dapoigny M, Scott KP, et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 2012; 35: 828-838.
34.
Ponnusamy K, Choi JN, Kim J, et al. Microbial community and metagnomic comparison of irritable bowel syndrome faeces. J Med Microbiol 2011; 60(Pt 6): 817-827.
35.
Matsunami M, Tarui T, Mitani K, et al. Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 2009; 58: 751-761.
36.
Vrieze A, de Groot PF, Kootte RS, et al. Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? Best Pract Res Clin Gastroenterol 2013; 27: 127-137.
37.
dePablo P, Dietrich T, McAlindon TE. Association of periodontal disease and tooth loos with rheumatoid arthritis in the US population. J Reumatol 2008; 35: 70-76.
38.
Scher JU, Ubeda C, Equinda M, et al. Peridontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum 2012; 64: 3083-3094.
39.
deAquino SG, Abdollahi-Roodsaz S, Koenders MI, et al. Peridontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-Driven Th17 response. J Immunol 2014; 192: 4103-4111.
40.
Vaahtovuo J, Mnukka E, Korkeamaki M, et al. Fecal microbiota in early rheumatoid arthritis. J Rheumatol 2008; 35: 1500-1505.
41.
Rogier R, Koenders MI, Abdollahi-Roodsaz S. Toll-like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune response for autoimmune arthritis. J Immunol Res 2015; 2015: 527696.
42.
Liu X, Zou Q, Zeng Y, et al. Analysis of fecal lactobacillus community structure in patients within early rheumatoid arthritis. Curr Microbiol 2013; 67: 170-176.
43.
Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010; 18: 190-195.
44.
Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol 2012; 7: 91-109.
45.
Million M, Angelakis E, Maraninchi M, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes 2013; 37: 1460-1466.
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (
https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.