EN PL
REVIEW PAPER
New aspects of spondyloarthritis pathogenesis. Part III – arthritis, pathological bone remodeling
 
 
More details
Hide details
 
Submission date: 2014-04-30
 
 
Final revision date: 2014-06-27
 
 
Acceptance date: 2014-07-25
 
 
Online publication date: 2014-09-12
 
 
Publication date: 2014-08-31
 
 
Reumatologia 2014;52(4):247-254
 
KEYWORDS
TOPICS
ABSTRACT
Spondyloarthritis (SpA) is a form of chronic inflammatory arthritis affecting axial and peripheral joints, which may be initiated by inflammation of joint subchondral bone marrow or enthesitis. Invasive fibrous tissue which substitutes bone marrow, entheseal innate-like T lymphocytes and proinflammatory cytokines: tumor necrosis factor (TNF), interleukins 23, 17 and 22, all contribute to these local pathological processes. Joint inflammation, joint cartilage and bone destruction are mediated by mechanisms that are molecularly similar to rheumatoid arthritis. These pathologic processes are halted by effective anti-inflammatory therapy, including anti-TNF biological agents. By contrast, anti-TNF therapy fails to inhibit pathologic new bone formation, which is a unique hallmark of SpA and results, among others things, in syndesmophyte formation followed by spine ankylosis. The molecular mechanisms driving pathologic bone remodeling in SpA patients and interaction of this process with inflammatory pathways are not fully understood. Three hypotheses, discussed in the article, have been proposed to explain this issue.
 
REFERENCES (59)
1.
Zimmermann-Górska I. Wspólne cechy zapalnych chorób stawów z zajęciem stawów kręgosłupa. In: Reumatologia kliniczna. Zimmermann-Górska I (ed.). Wydawnictwo Lekarskie PZWL, Warszawa 2008; 729-731. .
 
2.
McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesitis. Lancet 1998; 352: 1137-1140. .
 
3.
Zimmermann-Górska I. Zesztywniające zapalenie stawów kręgosłupa. In: Reumatologia kliniczna. Zimmermann-Górska I (ed.). Wydawnictwo Lekarskie PZWL, Warszawa 2008; 732-740. .
 
4.
Mease PJ. Psoriatic arthritis: update on pathophysiology, assessment and management. Ann Rheum Dis 2011; 70: i77-84. .
 
5.
van der Weijden MAC, Claushuis TAM, Nazari T, et al. High prevalence of low bone mineral density in patients within 10 years of onset of ankylosing spondylitis: a systematic review. Clin Rheumatol 2012; 31: 1529-1535. .
 
6.
Klinberg E, Lorentzon M, Mellström D, et al. Osteoporosis in ankylosing spondylitis – prevalence, risk factors and methods of assessment. Arthritis Res Ther 2012; 14: R108. .
 
7.
Klinberg E, Geijer M, Göthlin J, et al. Vertebral fractures in ankylosing spondylitis are associated with lower bone mineral density in both central and peripheral skeleton. J Rheumatol 2012; 39: 1987-1995. .
 
8.
Akgöl G, Kamanlı A, Ozgocmen S. Evidence for inflammation- induced bone loss in non-radiographic axial spondyloarthritis. Rheumatology (Oxford) 2014; 53: 497-501. .
 
9.
Goldring SR. Osteoimmunology and bone homeostasis: relevance to spondyloarthritis. Curr Rheumatol Rep 2013; 15: 342. .
 
10.
Braun J, Baraliakos X, Heldmann F, et al. Tumor necrosis factor alpha antagonists in the treatment of axial spondyloarthritis. Expert Opin Investig Drugs 2014; 23: 647-659. .
 
11.
Wendling D, Claudepierre P. New bone formation in axial spondyloarthritis. Joint Bone Spine 2013; 80: 454-458. .
 
12.
Machado P. Anti-tumour necrosis factor and new bone formation in ankylosing spondylitis: the controversy continues. Arthritis Rheum 2013; 65: 2537-2540. .
 
13.
Chou Ch-T. Why is biological therapy useful in spondyloarthritis? Knowledge from synovial immunopathological studies of spondyloarthritis. Int J Rheum Dis 2012; 15: 507-511. .
 
14.
van Kuijk AW, Tak PP. Synovitis in psoriatic arthritis: immunohistochemistry, comparisons with rheumatoid arthritis, and effects of therapy. Curr Rheumatol Rep 2011; 13: 353-359. .
 
15.
Bollow M, Fischer T, Reisshauer H, et al. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cell and macrophages predominate in early and active sacroiliitis – cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis 2000; 59: 135-140. .
 
16.
Appel H, Kuhne M, Spiekermann S, et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis. Evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum 2006; 54: 1805-1813. .
 
17.
Benjamin M, McGonagle D. The enthesistis organ concept and its relevance to the spondyloarthropathies. Adv Exp Med Biol 2009; 649: 57-70. .
 
18.
Yasser R, Yasser E, Hanan D, et al. Enthesitis in seronegative spondyloarthropathies with special attention to the knee joint by MRI: a step forward toward understanding disease pathology. Clin Rheumatol 2011; 30: 313-322. .
 
19.
Paramarta JE, van der Leij C, Gofita I, et al. Peripheral joint inflammation in early onset spondyloarthritis is not specifically related to enthesitis. Ann Rheum Dis 2014; 73: 735-740. .
 
20.
Sherlock JP, Joyce-Shaikh B, Turner SP, et al. IL-23 induces spondyloarthropaty by acting on ROR-t+ CD3+CD4–CD8– enthesal resident T cells. Nature Med 2012; 18: 1069-1076. .
 
21.
Noordenbos T, Yeremenko N, Gofita I, et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondyloarthritis. Arthritis Rheum 2012; 64: 99-109. .
 
22.
Appel H, Maier R, Wu P, et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevence than the Th17-mediated adaptive immune response. Arthritis Res Ther 2011; 13: R95. .
 
23.
Romero-Sanchez C, Jaimes DA, Londońo J, et al. Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritis. Clin Exp Rheumatol 2011; 29: 828-834. .
 
24.
Appel H, Maier R, Bleil J, et al. In situ analysis of interleukin-23 and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum 2013; 65: 1522-1529. .
 
25.
Paramarta JE, De Rycke L, Heijda TF, et al. Efficacy and safety of adalimumab for the treatment of peripheral arthritis in spondyloarthritis patients without ankylosing spondylitis or psoriatic arthritis. Ann Rheu Dis 2013; 72: 1793-1799. .
 
26.
Finzel S, Kraus S, Schmidt S, et al. Bone anabolic changes progress in psoriatic arthritis patients despite treatment with methotrexate or tumour necrosis factor inhibitors. Ann Rheum Dis 2013; 72: 1176-1181. .
 
27.
Hreggvidsdottir HS, Noordenbos T, Baeten DL. Inflammatory pathways in spondyloarthritis. Mol Immunol 2014; 57: 28-37. .
 
28.
Andersen T, Rasmussen TH, Hvid M, et al. Increased plasma levels of IL-21 and IL-23 in spondyloarthritis are not associated with clinical and MRI findings. Rheumatol Int 2012; 32: 387-393. .
 
29.
Bowness P, Ridley A, Shaw J, et al. Th17 cell epressing KIR3DL2 and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 2011; 186: 2672-2680. .
 
30.
Kenna TJ, Davidson SI, Duan R, et al. Enrichment of circulating interleukin-17-secreting interleukin-23-receptor positive / T cells in patients with active ankylosing spondylitis. Arthritis Rheum 2012; 64: 1420-1429. .
 
31.
Zhang L, Li Y, Qi L, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PloS ONE 2012; 7: e31000. .
 
32.
Kontny E. Nowe aspekty patogenezy spondyloartropatii zapalnych. Część II – czynniki środowiskowe, zaburzenia mikrobiomu, objawy pozastawowe. Reumatologia 2014; 52: 172-180. .
 
33.
Lories RJ, Luyten FP, de Vlam K. Progress in spondyloarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther 2009; 11: 221. .
 
34.
Komori T. Functions of the osteocyte network in the regulation of bone mass. Cell Tissue Res 2013; 352: 191-198. .
 
35.
Braun J, Bollow M, Neure L, et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995; 38: 499-505. .
 
36.
Appel H, Ruiz-Heiland G, Listing J, et a. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 2009; 60: 3257-3262. .
 
37.
Lories RJ, Derese I, Ceuppens JL, et al. Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum 2003; 48: 807-818. .
 
38.
McGonagle D, Wakefield RJ, Tan AL, et al. Distinct topography of erosion and new bone formation in Achilles tendon enthesitis. Arthritis Rheum 2008; 58: 2694-2699. .
 
39.
Bleil J, Maier R, Hempfing A, et al. Histomorphological and histomorphometric characteristics of zygapophyseal joint remodeling in ankylosing spondylitis. Arthritis Rheum 2014; 66: 1745-1754. .
 
40.
Braem K, Lories RJ. Insight into the pathophysiology of ankylosing spondylitis: contributions from animal models. Joint Bone Spine 2012; 79: 243-248. .
 
41.
Carter S, Braem K, Lories RJ. The role of bone morphogenic proteins in ankylosing spondylitis. Ther Adv Musculoskel Dis 2012; 4: 293-299. .
 
42.
Santos A, Bakker AD, Willems HM, et al. Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes. Calcif Tissue Int 2011; 89: 318-326. .
 
43.
Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone 2008; 42: 606-615. .
 
44.
Jacques P, Lambrecht S, Verheugen E, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis 2014; 73: 437-445. .
 
45.
Chiowchanwisawakit P, Lambert RGW, Conner-Spady B, et al. Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum 2011; 63: 2215-2225. .
 
46.
Baraliakos X, Heldmann F, Callhoff J, et al. Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? – a long-term observational study using magnetic resonance imaging and conventional radiography. Ann Rheum Dis 2013; doi: 10.1136/annrheumdis-2013-203425. .
 
47.
van Tubergen A, Ramiro S, van der Heijde D, et al. Development of new syndesmophytes and bridges in ankylosing spondylitis and their predictors: a longitudinal study. Ann Rheum Dis 2012; 71: 518-523. .
 
48.
Poddubnyy D, Haibel H, Listing J, et al. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondyloarthritis. Arthritis Rheum 2012; 64: 1388-1398. .
 
49.
Heiland GR, Appel H, Poddubnyy D, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis 2012; 71: 572-574. .
 
50.
Pedersen SJ, Chiowchanwisawakit P, Lambert RG, et al. Resolution of inflammation following treatment of ankylosing spondylitis is associated with new bone formation. J Rheumatol 2011; 38: 1349-1354. .
 
51.
Maksymowych WP, Morency N, Conner-Spady B, et al. Suppression of inflammation and effects on new bone formation in ankylosing spondylitis: evidence for a window of opportunity in disease modification. Ann Rheum Dis 2013; 72: 23-28. .
 
52.
Maksymowych WP. Evidence in support of the validity of the TNF brake hypothesis. Ann Rheum Dis 2013; 72: e31. .
 
53.
Baraliakos X, Haibel H, Listing J, et al. Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann Rheum Dis 2014; 73: 710-715. .
 
54.
Braun J, Baraliakos X, Hermann KG, et al. The effect of two golimumab doses on radiographic progression in ankylosing spondylitis: results through 4 years of the GO-RAISE trial. Ann Rheum Dis 2014; 73: 1107-1113. .
 
55.
Haroon N, Inman RD, Leach TJ, et al. The impact of TNF-inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum 2013; 65: 2645-2654. .
 
56.
Baraliakos X, Braun J. Response to “Evidence in support of the validity of the TNF brake hypothesis” by Maksymowych. Ann Rheum Dis 2013; 72: e32. .
 
57.
Lories RJU, Derese I, De Bari C, et al. Evidence for uncoupling of inflammation and joint remodelling in a mouse model of spondyloarthritis. Arthritis Rheum 2007; 56: 489-497. .
 
58.
Poddubnyy D, Rudwaleit M, Haibel H, et al. Effect of non-steroidal anti-inflammatory drugs on radiographic spinal progression in patients with axial spondyloarthritis: results from the German Spondyloarthritis Inception Cohort. Ann Rheum Dis 2012; 71: 1616-1622. .
 
59.
Kroon F, Landewe R, Dougados M, et al. Continuous NSAID use reverts the effects of inflammation on radiographic progression in patients with ankylosing spondylitis. Ann Rheum Dis 2012; 71: 1623-1629.
 
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
eISSN:2084-9834
ISSN:0034-6233
Journals System - logo
Scroll to top