REVIEW PAPER
Bone and adipose tissue – more and more interdependence
More details
Hide details
Submission date: 2014-02-26
Final revision date: 2014-05-14
Acceptance date: 2014-09-23
Online publication date: 2014-11-17
Publication date: 2014-10-31
Reumatologia 2014;52(5):305-310
KEYWORDS
TOPICS
ABSTRACT
In bone marrow, osteoblasts and adipocytes originate from common progenitor cells – mesenchymal stem cells (MSCs). The further cell differentiation towards one of the two lines, depending on numerous factors, might have an impact on pathologies of bone in further life. Evidence from experimental and clinical studies indicates multiple reciprocal links between skeleton and adipose tissue. Numerous adipocyte products – leptin, adiponectin, etc. – directly or indirectly affect bone formation and resorption, which take place constantly. This knowledge verifies our views on obesity, osteoporosis and fragility fractures. We also know that bone remodeling, a process that requires energy, is heavily dependent on insulin; moreover, bone is a source of osteocalcin, a hormone whose role goes far beyond determining the level of bone turnover. The endocrine role of the skeleton becomes a reality.
REFERENCES (57)
1.
Gimble JM, Zvonic S, Floyd ZE, et al. Playing with bone and fat. J Cell Biochem 2006; 98: 251-266. .
2.
Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180-192. .
3.
Gimble JM, Robinson CE, Wu X, Kelly KA. The function of adipocytes in the bone marrow stroma: an update. Bone 1996; 19: 421-428. .
4.
Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381-390. .
5.
Hasegawa T, Oizumi K, Yoshiko Y, et al. The PPARgamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations. BMC Dev Biol 2008; 8: 71. .
6.
Yoon WJ, Cho YD, Kim WJ, et al. Pin1-mediated conformational change and subnuclear focal accumulation of Runx2 is crucial for FGF2-induced osteoblast differentiation. J Biol Chem 2014; 289: 8828-8838. .
7.
Sinha KM, Yasuda H, Zhou X, deCrombrugghe B. Osterix and NO66 histone demethylase control the chromatin architecture of Osterix target genes during osteoblast differentiation. J Bone Miner Res 2014; 29: 855-865. .
8.
Morsczeck C. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int 2006; 78: 98-102. .
9.
Lecka-Czernik B. PPARs in bone: the role in bone cell differentiation and regulation of energy metabolism. Curr Osteoporos Rep 2010; 8: 84-90. .
10.
Akune T, Ohba S, Kamekura S, et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004; 113: 846-855. .
11.
Liu LF, Shen WJ, Zhang ZH, et al. Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARgamma and adiponectin. J Cell Physiol 2010; 225: 837-845. .
12.
Kahn SE, Zinman B, Lachin JM, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008; 31: 845-851. .
13.
Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 2009; 180: 32-39. .
14.
Sadie-Van Gijsen H, Crowther NJ, Hough FS, Ferris WF. The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity. Cell Mol Life Sci 2013; 70: 2331-2349. .
15.
Dytfeld J, Horst-Sikorska W. Pregnancy associated osteoporosis – a case report. Ginekol Pol 2012; 83: 377-379. .
16.
Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 2010; 316: 129-139. .
17.
Pischon T, Girman CJ, Hotamisligil GS, et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291: 1730-1737. .
18.
Spranger J, Kroke A, Möhlig M, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003; 361: 226-228. .
19.
Baratta R, Amato S, Degano C, et al. Adiponectin relationship with lipid metabolism is independent of body fat mass: evidence from both cross-sectional and intervention studies. J Clin Endocrinol Metab 2004; 89: 2665-2671. .
20.
Berner HS, Lyngstadaas SP, Spahr A, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004; 35: 842-849. .
21.
Pacheco-Pantoja EL, Waring VJ, Wilson PJ, et al. Adiponectin receptors are present in RANK-L-induced multinucleated osteoclast-like cells. J Recept Signal Transduct Res 2013; 33: 291-297. .
22.
Shinoda Y, Yamaguchi M, Ogata N, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 2006; 99: 196-208. .
23.
Zhang Y, Zhou P, Kimondo JW. Adiponectin and osteocalcin: relation to insulin sensitivity. Biochem Cell Biol 2012; 90: 613-620. .
24.
Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996; 271: 10697-10703. .
25.
Richards JB, Valdes AM, Burling K, et al. Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab 2007; 92: 1517-1523. .
26.
Jürimäe J, Jürimäe T. Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables. Am J Phys 2007; 293: E42-E47. .
27.
Basurto L, Galván R, Cordova N, et al. Adiponectin is associated with low bone mineral density in elderly men. Eur J Endocrinol 2009; 160: 289-293. .
28.
Biver E, Salliot C, Combescure C, et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 2011; 96: 2703-2713. .
29.
Johansson H, Odén A, Lerner UH, et al. High serum adiponectin predicts incident fractures in elderly men: Osteoporotic fractures in men (MrOS) Sweden. J Bone Miner Res 2012; 27: 1390-1396. .
30.
Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp3/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 2003; 278: 9073-9085. .
31.
Considine RV. Human leptin: an adipocyte hormone with weight regulatory and endocrine functions. Semin Vasc Med 2005; 5: 15-24. .
32.
Miller LE, Volpe JJ, Coleman-Kelly MD, et al. Anthropometric and leptin changes in women following different dietary approaches to weight loss. Obesity 2009; 17: 199-201. .
33.
Williams GA, Callon KE, Watson M, et al. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res 2011; 26: 1698-1709. .
34.
Hamrick MW, Della-Fera MA, Choi YH, et al. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res 2005; 20: 994-1001. .
35.
Reid IR. Fat and bone. Arch Biochem Biophys 2010; 503: 20-27. .
36.
Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005; 434: 514-520. .
37.
Koroglu BK, Kiris F, Ersoy IH, et al. Relation of leptin, adiponectin and insulin resistance to bone mineral density in type 2 diabetic postmenopausal women. Endokrynol Pol 2011; 62: 429-435. .
38.
Wu N, Wang QP, Li H, et al. Relationships between serum adiponectin, leptin concentrations and bone mineral density, and bone biochemical markers in Chinese women. Clin Chim Acta 2010; 411: 771-775. .
39.
Jürimäe J, Jürimäe T, Leppik A, Kums T. The influence of ghrelin, adiponectin, and leptin on bone mineral density in healthy postmenopausal women. J Bone Miner Metab 2008; 26: 618-623. .
40.
Vasilkova O, Mokhort T, Sharshakova T, et al. Leptin is an independent determinant of bone mineral density in men with type 2 diabetes mellitus. Acta Diabetol 2011; 48: 291-295. .
41.
Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989; 69: 990-1047. .
42.
Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 2011; 54: 1291-1297. .
43.
Mauro LJ, Olmsted EA, Skrobacz BM, et al. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem 1994; 269: 30659-30667. .
44.
Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456-469. .
45.
Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 2008; 105: 5266-5270. .
46.
Yadav VK, Oury F, Suda N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009; 138: 976-989. .
47.
Pi M, Quarles LD. Novel bone endocrine networks integrating mineral and energy metabolism. Curr Osteoporos Rep 2013; 11: 391-399. .
48.
Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009; 94: 45-49. .
49.
Pittas AG, Harris SS, Eliades M, et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 2009; 94: 827-832. .
50.
Motyl KJ, McCabe LR, Schwartz AV. Bone and glucose metabolism: a two-way street. Arch Biochem Biophys 2010; 503: 2-10. .
51.
Lucey AJ, Paschos GK, Thorsdottir I, et al. Young overweight and obese women with lower circulating osteocalcin concentrations exhibit higher insulin resistance and concentrations of C-reactive protein. Nutr Res 2013; 33: 67-75. .
52.
Díaz-López A, Bulló M, Juanola-Falgarona M, et al. Reduced serum concentrations of carboxylated and undercarboxylated osteocalcin are associated with risk of developing type 2 diabetes mellitus in a high cardiovascular risk population: a nested case-control study. J Clin Endocrinol Metab 2013; 98: 4524-4531. .
53.
Ng KW. Regulation of glucose metabolism and the skeleton. Clin Endocrinol 2011; 75: 147-155. .
54.
Karsenty G, Oury F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol 2014; 382: 521-526. .
55.
Goncerz G. Polskie zalecenia postępowania diagnostycznego i leczniczego w osteoporozie – podsumowanie aktualizacji 2013. Reumatologia 2013; 1: 33-46. .
56.
Dane C, Dane B, Cetin A, Erginbas M. Comparison of the effects of raloxifene and low-dose hormone replacement therapy on bone mineral density and bone turnover in the treatment of postmenopausal osteoporosis. Gynecol Endocrinol 2007; 23: 398-403. .
57.
Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteo-blasts integrates bone remodeling and energy metabolism. Cell 2010; 142: 296-308.
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (
https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.