REVIEW PAPER
Infective agents and polymyalgia rheumatica: key discussion points emerging from a narrative review of published literature
More details
Hide details
1
Department of Internal and Geriatric Medicine, Azienda Sanitaria Locale Napoli 3 sud, Rheumatologic Outpatient Clinic, Health District No. 59, Naples, Sant’Agnello, Italy
2
Central and North West London NHS Trust, England
3
Department of Primary Care, Health District of Soverato, Azienda Sanitaria Provinciale Catanzaro, Italy
Submission date: 2024-08-23
Final revision date: 2024-09-20
Acceptance date: 2024-10-16
Online publication date: 2024-11-06
Corresponding author
Ciro Manzo
Manzo, Poliambulatorio ‘Mariano Lauro’ ASL Napoli 3 sud, viale dei Pini 1, 80065 Sant’Agnello, Italy
Reumatologia 2024;62(5):360-367
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The aetiology of polymyalgia rheumatica (PMR) is unknown. Recently, reports on cases of PMR following the coronavirus disease 2019 (COVID-19) have revived the role of infection as an aetiological or triggering factor. It is estimated that patients with PMR have manifestations of giant cell arteritis (GCA) in < 20% of cases. To date, little is known on the potential role of infectious agents in facilitating this association. Given this background, we performed a review of published literature. Our first aim was to review and discuss the relationship between PMR and infective agents. Secondly, we compared data of PMR-only patients with PMR and overlapping GCA to seek any commonalities or differences regarding the type of infectious agent in these two subgroups.
Material and Methods:
We performed a non-systematic literature search on Embase and Medline (COVID interface) with the following search terms: “polymyalgia rheumatica” AND “infections” OR “infectious agents”, both MESH headings and free-text (in each language they were written). Each paper’s reference list was scanned for additional publications meeting this study’s aim. When papers reported data partially presented in previous articles, we referred to the most recent published data. Abstracts submitted at conferences or from non-peer-reviewed sources were not included. Polymyalgia rheumatica following vaccinations was an additional exclusion criterion.
Results:
Several infectious agents have been held responsible for PMR. However, no definite causal link has been identified so far. According to our review, the search for a specific infectious agent, however intriguing, appears to be stagnating. Genetic background and epigenetic regulation probably play a key role. However, topical studies are lacking. Polymyalgia rheumatica as an adverse event following immunization should be kept methodologically distinct from PMR following an acute infection, as the adjuvants in the vaccine can make a significant difference.
Conclusions:
Finally, some infectious agents are able to replicate in human arteries or have an endothelium tropism. Whilst these can theoretically trigger GCA, their role in isolated PMR seems minimal.
REFERENCES (88)
1.
Gonzalez-Gay MA, Matteson EL, Castaneda S. Polymyalgia rheumatica. Lancet 2017; 390: 1700–1712, DOI: 10.1016/ S0140-6736(17)31825-1.
2.
Manzo C. Incidence and prevalence of polymyalgia rheumatica (PMR): the importance of the epidemiological context. The Italian case. Med Sci (Basel) 2019; 7: 92, DOI: 10.3390/ medsci7090092.
3.
Manzo C. Polymyalgia rheumatica (PMR) with normal values of both erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) concentration at the time of diagnosis in a centenarian man: a case report. Diseases 2018; 6: 84, DOI: 10.3390/diseases6040084.
4.
Gazitt T, Zisman D, Gardner G. Polymyalgia rheumatica: a common disease in seniors. Curr Rheumatol Rep 2020; 22: 40, DOI: 10.1007/s11926-020-00919-2.
5.
Camellino D, Giusti A, Girasole G, et al. Pathogenesis, diagnosis, and management of polymyalgia rheumatica. Drugs Aging 2019; 36: 1015–1026, DOI: 10.1007/s40266-019-00705-5.
6.
Milchert M, Brzosko M. Diagnosis of polymyalgia rheumatica usually means a favourable outcome for your patient. Indian J Med Res 2017; 145: 593–600, DOI: 10.4103/ijmr.IJMR_298_17.
7.
González-Gay MA, García-Porrúa C, Salvarani C, et al. Polymyalgia manifestations in different conditions mimicking polymyalgia rheumatica. Clin Exp Rheumatol 2000; 18: 755–759.
8.
Manzo C, Camellino D. Polymyalgia rheumatica: diagnostic and therapeutic issues of an apparently straightforward disease. Recenti Progress Med 2017; 108: 221–231, DOI: 10.1701/2695.27559 [Article in Italian].
9.
Gazit T, Kibari A, Nasrallah N, et al. Polymyalgia rheumatica: the great imitator. Isr Med Assoc J 2019; 21: 627–628.
10.
Barde F, Ascione S, Pacoureau L, et al. Accuracy of self-reported diagnoses of polymyalgia rheumatica and giant cell arteritis in the French prospective E3N- EPIC cohort: a validation study. Semin Arthritis Rheum 2024; 64: 152298, DOI: 10.1016/j.semarthrit.2023.152298.
11.
Manzo C, Milchert M, Natale M, Brzosko M. Polymyalgia rheumatica without elevated baseline acute phase reactants. Clin Exp Rheumatol 2021; 39: 441, DOI: 10.55563/clinexprheumatol/s4c5k3.
12.
Manzo C, Milchert M, Natale M, Brzosko M. Polymyalgia rheumatica with normal values of both erythrocyte sedimentation rate and C-reactive protein concentration at the time of diagnosis. Rheumatology (Oxford) 2019; 5: 921–923, DOI: 10.1093/rheumatology/key431.
13.
Marsman De, Den Broeder N, Boers N, et al. Polymyalgia rheumatica patients with and without elevated baseline acute phase reactants: distinct subgroups of polymyalgia rheumatica? Clin Exp Rheumatol 2021; 39: 32–37, DOI: 10.55563/clinexprheumatol/gdps1r.
14.
Kara M, Alp G, Koç AM. Diagnostic difficulties in polymyalgia rheumatica cases with normal erythrocyte sedimentation rate and C-reactive protein values. Medicine (Baltimore) 2023; 102: e35385, DOI: 10.1097/MD.000000000003538.
15.
Duarte-Salazar C, Vazquez-Meraz JE, Ventura-Ríos L, et al. Polymyalgia rheumatica post-SARS-CoV-2 onfection. J Case Reports Immunol 2024; 2024: 6662652, DOI: 10.1155/2024/6662652.
16.
Buttgereit F, Matteson EL, Dejaco C. Polymyalgia rheumatica and giant cell arteritis. JAMA 2020; 324: 993–994, DOI: 10.1001/jama.2020.10155.
17.
Camellino D, Matteson EL, Buttgereit F, Dejaco C. Monitoring and long-term management of giant cell arteritis and polymyalgia rheumatica. Nat Rev Rheumatol 2020; 16: 481–495, DOI: 10.1038/s41584-020-0458-5.
18.
Cimmino MA, Grazi G, Seriolo B, Accardo S. Polymyalgia rheumatica and Borrelia burgdorferi infection. Br J Rheumatol 1993; 32: 523, DOI: 10.1093/rheumatology/32.6.523.
19.
Paparone PW. Polymyalgia rheumatica or Lyme disease? How to avoid misdiagnosis in older patients. Postgrad Med 1995; 97: 161–164.
20.
Schwartzberg M, Weber CA, Musico J. Lyme borreliosis presenting as a polymyalgia rheumatica-like syndrome. Br J Rheumatol 1995; 34: 392–393, DOI: 10.1093/rheumatology/34.4.392.
21.
Steere AC. Medical progress: Lyme disease. N Engl J Med 2001; 345: 115–125, DOI: 10.1056/NEJM200107123450207.
22.
Bacon RM, Kugeler KJ, Mead PS; Centers for Disease Control and Prevention (CDC). Surveillance for Lyme disease – United States, 1992–2006. MMWR Surveill Summ 2008; 57: 1–9.
23.
Heller JE, Shadick NA. Lyme disease. In: Rheumatology. Hochberg MC, Silman AJ, Smolen JS, et al (eds.). 5th ed. Mosby, Philadelphia 2010, 1079–1085.
24.
Chakravarty K, Merry P. Polymyalgia rheumatica – a delayed sequelae of Borrelia infection? Br J Rheumatol 1992; 31: 647–648, DOI: 10.1093/rheumatology/31.9.647-a.
25.
Steere AC, Dwyer E, Winchester R. Association of chronic Lyme arthritis with HLA-DR4 and HLA-DR2 alleles. N Engl J Med 1990; 323: 219–223, DOI: 10.1056/NEJM199007263230402.
26.
Uddhammar A, Boman J, Juto P, Rantapää Dahlqvist S. Antibodies against Chlamydia pneumoniae, cytomegalovirus, enteroviruses and respiratory syncytial virus in patients with polymyalgia rheumatica. Clin Exp Rheumatol 1997; 15: 299–302.
27.
Elling H, Skinhøj P, Elling P. Hepatitis B virus and polymyalgia rheumatica: a search for HBsAg, Hbsab, Hbcab, HBeAg, and Hbeab. Ann Rheum Dis 1980; 39: 511–513, DOI: 10.1136/ard.39.5.511.
28.
Duhaut P, Bosshard S, Dumontet C. Giant cell arteritis and polymyalgia rheumatica: role of viral infections. Clin Exp Rheumatol 2000; 18 (4 Suppl 20): S22–S23.
29.
Iwata K, Mizuno Y. A case of polymyalgia rheumatica following influenza B infection. Int J Gen Med 2015; 8: 345–347, DOI: 10.2147/IJGM.S92435.
30.
Chang R, Yen-Ting Chen T, Wang SI, et al. Risk of autoimmune diseases in patients with COVID-19: a retrospective cohort study. EClinicalMedicine 2023; 56: 101783, DOI: 10.1016/j.eclinm.2022.101783.
31.
Ahn SM, Eun S, Ji S, et al. Incidence of rheumatic diseases during the COVID-19 pandemic in South Korea. Korean J Intern Med 2023; 38: 248–253, DOI: 10.3904/kjim.2022.135.
32.
Ursini F, Ruscitti P, Addimanda O, et al. Inflammatory rheumatic diseases with onset after SARS-CoV-2 infection or COVID-19 vaccination: a report of 267 cases from the COVID-19 and ASD group. RMD Open 2023; 9: e003022, DOI: 10.1136/rmdopen-2023-00302.
33.
Manzo C, Castagna A, Ruotolo G. Can SARS-CoV-2 trigger relapse of polymyalgia rheumatica? Joint Bone Spine 2021; 88: 105150, DOI: 10.1016/j.jbspin.2021.105150.
34.
Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–1953. I. Clinical features. Trans R Soc Trop Med Hyg 1955; 49: 28–32, DOI: 10.1016/0035-9203(55)90080-8.
35.
Kucharz EJ, Cebula-Byrska I. Chikungunya fever. Eur J Intern Med 2012; 23: 325–329, DOI: 10.1016/j.ejim.2012.01.009.
36.
Suhrbier A. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15: 597–611, DOI:
https://doi.org/10.1038/s41584....
37.
Pollett S, Hsieh HC, Lu D, et al. The risk and risk factors of chikungunya virus infection and rheumatological sequelae in a cohort of U.S. Military Health System beneficiaries: implications for the vaccine era. PLoS Negl Trop Dis 2024; 18: e0011810, DOI: 10.1371/journal.pntd.0011810.
38.
Gretillat F, Debievre J, Lubetzki J. Letter: Bacterial endocarditis revealed by rhizomelic pseudopolyarthritis. Nouv Presse Med 1976; 5: 1534 [Article in French].
39.
De Socio GV, Mencacci A, Bini P, Pasticci MB. Fusobacterium nucleatum endocarditis mimicking polymyalgia rheumatica. South Med J 2009; 102: 1082–1084, DOI: 10.1097/SMJ.0b013e3181b4e5b8.
40.
Auzary C, Le Thi Huong D, Delarbre X, et al. Subacute bacterial endocarditis presenting as polymyalgia rheumatica or giant cell arteritis. Clin Exp Rheumatol 2006; 24 (2 Suppl 41): S38–S40.
41.
Spomer A, Ho G Jr. Bacterial endocarditis and septic arthritis presenting as polymyalgia rheumatica. R I Med 1994; 77: 5–6.
42.
Churchill MA, Geraci HJE, Hunder GG. Musculoskeletal manifestations of bacterial endocarditis. Ann Intern Med 1977; 87: 754–759.
43.
Kucharz EJ, Kramza J, Grosicka A, Pieczyrak R. Clinical manifestations of Whipple’s disease mimicking rheumatic disorders. Reumatologia 2021; 59: 104–110, DOI:
https://doi.org/10.5114/reum.2....
44.
Obst W, Hoffmann A, Weigt J, et al. Whipple’s disease – delay of diagnosis by immunosuppressive therapy; a case-series report. Z Gastroenterol 2023; 61: 1002–1008, DOI: 10.1055/a-1890-5878.
45.
Elling P, Olsson AT, Elling H. Synchronous variations of the incidence of temporal arteritis and polymyalgia rheumatica in different regions of Denmark; association with epidemics of mycoplasma pneumoniae infection. J Rheumatol 1996; 23: 112–119.
46.
Pacoreau L, Barde F, Seror R, Nguyen Y. Association between infection and the onset of giant cell arteritis and polymyalgia rheumatica: a systematic review and meta-analysis. RMD Open 2023; 9: e003493, DOI: 10.11436/rmdopen-2023-003493.
47.
Brault C, Riis AH, Mor A, et al. Does low risk of infections as a marker of effective immunity predict increased risk of subsequent giant cell arteritis or polymyalgia rheumatica? A Danish population-based case-control study. Clin Epidemiol 2018; 10: 1533–1543, DOI: 10.2147/CLEP.S15829.
48.
Peris P. Polymyalgia rheumatica is not seasonal in pattern and is unrelated to parvovirus b19 infection. J Rheumatol 2003; 30: 2624–2626.
49.
Nuti R, Giordano N, Martini G, et al. Is polymyalgia rheumatica caused by infectious agents? J Rheumatol 2005; 32: 200–201.
50.
Ceccato F, Uña C, Regidor M, et al. Conditions mimicking polymyalgia rheumatica. Reumatol Clin 2011; 7: 156–160, DOI: 10.1016/j.reuma.2010.09.001.
51.
Manzo C, Milchert M, Venditti C, et al. Fever correlation with erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) concentrations in patients with isolated polymyalgia rheumatica (PMR): a retrospective comparison study between hospital and out-of-hospital local registries. Life (Basel) 2022; 12: 985, DOI: 10.3390/life12070985.
52.
Kniazkova I, Shapovalova L, Bogun M. A case report of polymyalgia rheumatica. Reumatologia 2018; 56: 190–193, DOI: 10.5114/reum.2018.76906.
53.
Paltta J, Suuronen S, Pirilä L, Palomäki A. Differential diagnostics of polymyalgia rheumatica in a university hospital in Finland. Scand J Rheumatol 2023; 52: 689–695, DOI: 10.1080/03009742.2023.2215044.
54.
Dalkilic E, Tufan AN, Hafizoglu E, et al. The process from symptom onset to rheumatology clinic in polymyalgia rheumatica. Rheumatol Int 2014; 34: 1589–1592, DOI: 10.1007/s00296-014-3034-y.
55.
Sobrero A, Manzo C, Stimamiglio A. The role of the general practitioner and the out-of-hospital public rheumatologist in the diagnosis and follow-up of patients with polymyalgia rheumatica. Reumatismo 2018; 70: 44–50, DOI: 10.4081/reumatismo.2018.1036.
56.
Watad A, Bragazzi NL, McGonagle D, et al. Autoimmune/inflammatory syndrome induced by adiuvants (ASIA) demonstrates distinct autoimmune and autoinflammatyory disease associations according to the adjiuvant subtype: insights from an analysis of 500 cases. Clin Immunol 2019; 203: 1–8, DOI: 10.1016/j.clim.2019.03.007.
57.
Manzo C, Castagna A, Isetta M. Polymyalgia rheumatica and polymyalgia-like syndromes as adverse events following COVID-19 vaccines: working notes from a narrative review of published literature. Reumatologia 2022; 60: 142–147, DOI: 10.5114/reum.2022.11566.
58.
Manzo C, Natale M, Castagna A. Polymyalgia rheumatica as uncommon adverse event following immunization with COVID-19 vaccine: a case report and review of literature. Aging Med (Milton) 2021; 4: 234–238, DOI: 10.1002/agm2.12171.
59.
Nahra V, Makandura M, Anthony DD, Mattar M. A case series on the COVID-19 vaccines and possible immune-related adverse events: a new challenge for the rheumatologists. Cureus 2022; 14: e29660, DOI: 10.7759/cureus.2966.
60.
Manzo C, Castagna A, Nune A, Isetta M. Polymyalgia rheumatica and polymyalgia-like syndromes as adverse events following immunisation with COVID-19 vaccines: a 15 months update. Reumatologia 2023; 61: 408–409, DOI: 10.5114/reum/172508.
61.
Cohen Tervaert JW, Martinez-Lavin M, Jara LJ, et al. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) in 2023. Autoimmun Rev 2023; 22: 103287, DOI: 10.1016/j.autrev.2023.103287.
62.
Verbeke R, Michael J, Hogan MJ, et al. Innate immune mechanisms of mRNA vaccines. Immunity 2022; 55: 1993–2005, DOI: 10.1016/j.immuni.2022.10.014.
63.
Alameh MG, Tombácz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021; 54: 2877–2892.e7, DOI: 10.1016/j.immuni.2021.11.001.
64.
Mettler C, Jonville-Bera AP, Grandvuillemin A, et al. Risk of giant cell arteritis and polymyalgia rheumatica following COVID-19 vaccination: a global pharmacovigilance study. Rheumatology (Oxford) 2022; 61: 865-867, DOI: 10.1093/rheumatology/keab756.
65.
Pinto Oliveira C, Ferreira Azevedo S, Vilafanha C, et al. Polymyalgia Rheumatica after COVID-19 vaccination: data from the EudraVigilance database. Acta Med Port 2024; 37: 396–397, DOI: 10.20344/amp.20952.
66.
Jarrot PA, Mirouse A, Ottaviani S, et al. Polymyalgia rheumatica and giant cell arteritis following COVID-19 vaccination: results from a nationwide survey. Hum Vaccin Immunother 2024; 20: 2334084, DOI: 10.1080/21645515.2024.2334084.
67.
Manzo C, Castagna A. Comment on: risk of giant cell arteritis and polymyalgia rheumatica following COVID-19 vaccination: a global pharmacovigilance study. Rheumatology (Oxford) 2022; 61: e101–e102, DOI: 10.1093/rheumatology/keab849.
68.
Ursini F, Ruscitti P, Addimanda O, et al. Inflammatory rheumatic diseases with onset after SARS-CoV-2 infection or COVID-19 vaccination: a report of 267 cases from the COVID-19 and ASD group. RMD Open 2023; 9: e003022, DOI: 10.1136/rmdopen-2023-003022.
69.
Hsu TY, D’Silva KM, Patel NJ, et al. Incident systemic rheumatic disease following COVID-19. Lancet Rheumatol 2021; 3: e402–e404, DOI: 10.1016/S2665-9913(21)00106-5.
70.
Pawelec G. Age and immunity: what is “immunosenescence”? Exp Gerontol 2018; 105: 4–9, DOI: 10.1016/j.exger.2017.10.024.
71.
Quiros-Roldan E, Alessandra Sottini A, Natali PG, Imberti L. The impact of immune system aging on infectious diseases. Microrganisms 2024; 12: 775, DOI: 10.3390/microorganisms12040775.
72.
Manzo C, Nune A, Castagna A. Why would immuno- and endocrino-senescence, age-related changes in the gut microbiota, and susceptibility to infection favour polymyalgia rheumatica over seronegative elderly-onset rheumatoid arthritis? Clin Exp Rheumatol 2023; 41 Suppl 135: 25–26, DOI: 10.55563/clinexprheumatol/hb7van.
73.
Barbé-Tuana F, Funchal G, Schmitz CRR, et al. The interplay between immunosenescence and age-related diseases. Semin Immunopathol 2020; 42: 545–557, DOI: 10.1007/s00281-020-00806-z.
74.
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11: 359, DOI: 10.3390/cells11030359.
75.
Cunha LL, Valsecchi VADS, Ward LS. Investigating population-level immunosenescence: from bench to bedside. Front Immunol 2022; 13: 949928, DOI: 10.3389/fimmu.2022.949928.
76.
Sendama W. The effect of ageing on the resolution of inflammation. Ageing Res Rev 2020; 57: 101000, DOI: 10.1016/j.arr.2019.101000.
77.
Hysa E, Gotelli E, Sammorì S, et al. Immune system activation in polymyalgia rheumatica: which balance between autoinflammation and autoimmunity? A systematic review. Autoimmun Rev 2022; 21: 102995, DOI: 10.1016/j.autrev.2021.102995.
78.
Hysa E, Sobrero A, Camellino D, et al. A seasonal pattern in the onset of polymyalgia rheumatica and giant cell arteritis? A systematic review and meta-analysis. Semin Arthritis Rheum 2020; 50: 1131–1139, DOI: 10.1016/j.semarthrit.2020.05.023.
79.
Salvarani C, Padoan R, Iorio L, et al. Subclinical giant cell arteritis in polymyalgia rheumatica: concurrent conditions or a common spectrum of inflammatory diseases? Autoimmun Rev 2023; 2023: 103415, DOI: 10.1016/j.autrev.2023.103415.
80.
Dejaco C, Duftner C, Buttgereit F, et al. The spectrum of giant cell arteritis and polymyalgia rheumatica: revisiting the concept of the disease. Rheumatol (Oxford) 2017; 56: 506–515, DOI: 10.1093/rheumatology/kew273.
81.
Hysa E, Bond M, Ehlers L, et al. Evidence on treat to target strategies in polymyalgia rheumatica and giant cell arteritis: a systematic literature review. Rheumatology (Oxford) 2024; 63: 285–297, DOI: 10.1093/rheumatology/kead471.
82.
Bubak AN, Mescher T, Mariani M, et al. Targeted RNA sequencing of formalin-fixed, paraffin-embedded temporal arteries from giant cell arteritis cases reveals viral signatures. Neurol Neuroimmunol Neuroinflamm 2021; 8: e0178, DOI: 10.1212/NXI.0000000000001078.
83.
Abendroth A, Slobedman B. Varicella-Zoster virus and giant cell arteritis. J Infect Dis 2021; 223: 4–6, DOI: 10.1093/infdis/jiaa567.
84.
Sammel AM, Smith S, Nguyen K, et al. Assessment for varicella zoster virus in patients newly suspected of having giant cell arteritis. Rheumatology (Oxford) 2020; 59: 1992–1996, DOI: 10.1093/rheumatology/kez556.
85.
Martins-Martinho J, Pintado Maury I, Leal I, Ponte C. Varicella zoster virus mimicking giant cell arteritis. ARP Rheumatol 2024; 3: 73–74, DOI: 10.63032/RFQW9758.
86.
Mulhearn B, Ellis J, Skeoch S, et al. Incidence of giant cell arteritis is associated with COVID-19 prevalence: a population-level retrospective study. Heliyon 2023; 9: e17899, DOI: 10.1016/j.heliyon.2023.e17899.
87.
Parreau S, Liozon E, Ly KH, et al. High incidence of giant cell arteritis during the COVID-19 pandemic: no causal relationship but possible involvement of stress. Clin Exp Rheumatol 2021; 39 Suppl 129: 199–200, DOI: 10.55563/clinexprheumatol/qsx4m.
88.
Mehta P, Sattui SE, van der Geest KSM, et al. Giant cell arteritis and COVID-19: similarities and discriminators. A systematic literature review. J Rheumatol 2021; 48: 1053–1059, DOI: 10.3899/jrheum.200766.
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (
https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.