CASE-BASED REVIEW
Attempts to identify the molecular cause of autoinflammatory recurrent fever
More details
Hide details
1
Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ukraine
Submission date: 2024-07-04
Final revision date: 2024-09-09
Acceptance date: 2024-09-29
Online publication date: 2024-11-08
Corresponding author
Oksana Boyarchuk
Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University,
1 m. Voli, Ternopil, 46001, Ukraine
Reumatologia 2024;62(5):381-388
KEYWORDS
TOPICS
ABSTRACT
Systemic autoinflammatory diseases caused by dysregulation of the innate immunity are a known cause of recurrent fevers. We present the molecular diagnosis results of 12 children with recurrent fever, analyzing the correlation between molecular findings and clinical symptoms. No pathogenic variants confirming autoinflammatory disease were found. One child was diagnosed with SRP54 deficiency, linked to congenital neutropenia with a cyclic pattern. Variants of uncertain significance were found in 6 patients in genes associated with autoinflammatory disorders, though two lacked clinical correlation. Variants of uncertain significance in the NLRC4 gene were detected in 2 patients with periodic fever, aphthous stomatitis, pharyngitis, adenitis (PFAPA) syndrome, in the PLSG2 gene in 1 child with systemic juvenile idiopathic arthritis, and in the MEFV gene in 1 patient with syndrome of uncertain recurrent fever. COVID-19 was identified as a triggering factor in 54.5% of cases. Further research is needed to clarify the role of genetic variants and environmental factors in recurrent fevers.
REFERENCES (40)
1.
Broderick L, Hoffman HM. Pediatric recurrent fever and autoinflammation from the perspective of an allergist/immunologist. J Allergy Clin Immunol 2020; 146: 960–966.e2, DOI: 10.1016/j.jaci.2020.09.019.
2.
Papa R, Penco F, Volpi S, et al. Syndrome of Undifferentiated Recurrent Fever (SURF): An Emerging Group of Autoinflammatory Recurrent Fevers. J Clin Med 2021; 10: 1963, DOI: 10.3390/jcm10091963.
3.
Gattorno M, Hofer M, Federici S, et al.; Eurofever Registry and the Paediatric Rheumatology International Trials Organisation (PRINTO). Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis 2019; 78: 1025–1032, DOI: 10.1136/annrheumdis-2019-215048.
4.
Krainer J, Siebenhandl S, Weinhäusel A. Systemic autoinflammatory diseases. J Autoimmun 2020; 109: 102421, DOI: 10.1016/j.jaut.2020.102421.
5.
Efthimiou P, Petryna O, Nakasato P, Kontzias A. New insights on multigenic autoinflammatory diseases. Ther Adv Musculoskelet Dis 2022; 14: 1759720X221117880, DOI: 10.1177/1759720X221117880.
6.
Boyarchuk O, Kovalchuk T, Kovalchuk N, Chubata O. Clinical variability of the systemic juvenile idiopathic arthritis course: literature review based on case series. Reumatologia 2020; 58: 436–443, DOI: 10.5114/reum.2020.102010.
7.
Tangye SG, Al-Herz W, Bousfiha A, et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 42: 1473–1507, DOI: 10.1007/s10875-022-01289-3.
8.
Sutera D, Bustaffa M, Papa R, et al. Clinical characterization, long-term follow-up, and response to treatment of patients with syndrome of undifferentiated recurrent fever (SURF). Semin Arthritis Rheum 2022; 55: 152024, DOI: 10.1016/j.semarthrit.2022.152024.
9.
Hegazy MT, Fayed A, Nuzzolese R, et al. Autoinflammatory diseases and the kidney. Immunol Res 2023; 71: 578–587, DOI: 10.1007/s12026-023-09375-3.
10.
Subbarayan A, Colarusso G, Hughes SM, et al. Clinical features that identify children with primary immunodeficiency diseases. Pediatrics 2011; 127: 810–816, DOI: 10.1542/peds.2010-3680.
11.
Boyarchuk O, Dmytrash L. Clinical Manifestations in the Patients with Primary Immunodeficiencies: Data from One Regional Center. Turk J Immunol 2019; 7: 113–119, DOI: 10.25002/tji.2019.1168.
12.
Erdős M, Boyarchuk O, Maródi L. Case Report: Association between cyclic neutropenia and SRP54 deficiency. Front Immunol 2022; 13: 975017, DOI: 10.3389/fimmu.2022.975017.
13.
Dundar M, Fahrioglu U, Yildiz SH, et al.; National Genetics Consortium Study. Clinical and molecular evaluation of MEFV gene variants in the Turkish population: a study by the National Genetics Consortium. Funct Integr Genomics 2022; 22: 291–315, DOI: 10.1007/s10142-021-00819-3.
14.
Bousfiha A, Jeddane L, Picard C, et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 2020; 40: 66–81, DOI: 10.1007/s10875-020-00758-x.
15.
Balta B, Erdogan M, Kiraz A, et al. A comprehensive molecular analysis and genotype-phenotype correlation in patients with familial Mediterranean fever. Mol Biol Rep 2020; 47: 1835–1843, DOI: 10.1007/s11033-020-05277-x.
16.
Ben-Chetrit E, Touitou I. The significance of carrying MEFV variants in symptomatic and asymptomatic individuals. Clin Genet 2024; 106: 217–223, DOI: 10.1111/cge.14566.
17.
Bernot A, da Silva C, Petit JL, et al. Non-founder mutations in the MEFV gene establish this gene as the cause of familial Mediterranean fever (FMF). Hum Mol Genet 1998; 7: 1317–1325, DOI: 10.1093/hmg/7.8.1317.
18.
Kriegshäuser G, Enko D, Hayrapetyan H, et al. Clinical and genetic heterogeneity in a large cohort of Armenian patients with late-onset familial Mediterranean fever. Genet Med 2018; 20: 1583–1588, DOI: 10.1038/gim.2018.46.
19.
Giaglis S, Papadopoulos V, Kambas K, et al. MEFV alterations and population genetics analysis in a large cohort of Greek patients with familial Mediterranean fever. Clin Genet 2007; 71: 458–467, DOI: 10.1111/j.1399-0004.2007.00789.x.
20.
Sedivá A, Horváth R, Maňásek V, et al. Cluster of patients with Familial Mediterranean fever and heterozygous carriers of mutations in MEFV gene in the Czech Republic. Clin Genet 2014; 86: 564–569, DOI: 10.1111/cge.12323.
21.
Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405–424, DOI: 10.1038/gim.2015.30.
22.
Palmeri S, Penco F, Bertoni A, et al. Pyrin Inflammasome Activation Defines Colchicine-Responsive SURF Patients from FMF and Other Recurrent Fevers. J Clin Immunol 2024; 44: 49, DOI: 10.1007/s10875-023-01649-7.
23.
Di Gioia SA, Bedoni N, von Scheven-Gête A, et al. Analysis of the genetic basis of periodic fever with aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome. Sci Rep 2015; 5: 10200, DOI: 10.1038/srep10200.
24.
Perko D, Debeljak M, Toplak N, Avčin T. Clinical features and genetic background of the periodic Fever syndrome with aphthous stomatitis, pharyngitis, and adenitis: a single center longitudinal study of 81 patients. Mediators Inflamm 2015; 2015: 293417, DOI: 10.1155/2015/293417.
25.
Gattorno M, Caorsi R, Meini A, et al. Differentiating PFAPA syndrome from monogenic periodic fevers. Pediatrics 2009; 124: e721–728, DOI: 10.1542/peds.2009-0088.
26.
Sundaram B, Kanneganti TD. Advances in Understanding Activation and Function of the NLRC4 Inflammasome. Int J Mol Sci 2021; 22: 1048, DOI: 10.3390/ijms22031048.
27.
Chear CT, Nallusamy R, Canna SW, et al. A novel de novo NLRC4 mutation reinforces the likely pathogenicity of specific LRR domain mutation. Clin Immunol 2020; 211: 108328, DOI: 10.1016/j.clim.2019.108328.
28.
Burbela E, Volianska L, Boyarchuk O. Clinical features and diagnosis of PFAPA syndrome: approach of the primary care physician. Pediatr Pol 2021; 96: 168–172, DOI: 10.5114/polp.2021.109301.
29.
Pardeo M, Bracaglia C, De Benedetti F. Systemic juvenile idiopathic arthritis: new insights into pathogenesis and cytokine directed therapies. Best Pract Res Clin Rheumatol 2017; 31: 505–516, DOI: 10.1016/j.berh.2018.02.002.
30.
La Bella S, Rinaldi M, Di Ludovico A, et al. Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. Int J Mol Sci 2023; 24: 1846, DOI: 10.3390/ijms24031846.
31.
Baysac K, Sun G, Nakano H, et al.; PLCG2-Immune Dysregulation Working Group; Mace E, Milner JD, Ombrello MJ. PLCG2-associated immune dysregulation (PLAID) comprises broad and distinct clinical presentations related to functional classes of genetic variants. J Allergy Clin Immunol 2024; 153: 230–242, DOI: 10.1016/j.jaci.2023.08.036.
32.
Vyzhga Y, Wittkowski H, Hentgen V, et al.; AID-Net JIRcohortEurofever/PRINTO. Unravelling the clinical heterogeneity of undefined recurrent fever over time in the European registries on Autoinflammation. Pediatr Rheumatol Online J 2024; 22: 55, DOI: 10.1186/s12969-024-00987-z.
33.
Karamanakos A, Vougiouka O, Sapountzi E, et al. The expanding clinical spectrum of autoinflammatory diseases with NOD2 variants: a case series and literature review. Front Immunol 2024; 15: 1342668, DOI: 10.3389/fimmu.2024.1342668.
34.
Boyarchuk O, Kovalchuk T. Overlapping clinical features of systemic juvenile idiopathic arthritis and SARS-CoV-2-related multisystem inflammatory syndrome in children. Reumatologia 2023; 61: 63–70, DOI: 10.5114/reum/161185.
35.
Boyarchuk O, Volianska L. Autoimmunity and long COVID in children. Reumatologia 2023; 61: 492–501, DOI: 10.5114/reum/176464.
36.
Boyarchuk O, Predyk L, Yuryk I. COVID-19 in patients with juvenile idiopathic arthritis: frequency and severity. Reumatologia 2021; 59: 197–199, DOI: 10.5114/reum.2021.107590.
37.
Keller L, Rabinovitch N. Post COVID recurrent fever in children with polymorphisms in the innate immunity regulator, pyrin; MEFV gene. J Allergy Clin Immunol Pract 2023; 11: 1943–1944, DOI: 10.1016/j.jaip.2023.02.036.
38.
Pan P, Shen M, Yu Z, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun 2021; 12: 4664, DOI: 10.1038/s41467-021-25015-6.
39.
Volianska LA, Burbela EI, Kosovska TM, et al. Long COVID in children: frequency and diagnostic challenges. Ukrainian Journal of Perinatology and Pediatrics 2023; 3: 101–106, DOI: 10.15574/PP.2023.95.101.
40.
Boyarchuk O, Lewandowicz-Uszyńska A, Kinash M, et al. Physicians’ awareness concerning primary immunodeficiencies in the Ternopil Region of Ukraine. Pediatr Pol 2018; 93: 221–228, DOI: 10.5114/polp.2018.77435.
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (
https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.