EN PL
PRACA PRZEGLĄDOWA
Komórki Th17 w patogenezie reumatoidalnego zapalenia stawów
 
Więcej
Ukryj
 
Data publikacji online: 16-11-2010
 
 
Reumatologia 2010;48(5):337-344
 
SŁOWA KLUCZOWE
STRESZCZENIE
Dzikie komórki CD4+, stymulowane przez komórki prezentujące antygen (APCs) i szereg cytokin, ulegają aktywacji i różnicowaniu do wielu subpopulacji limfocytów pomocniczych (Th) odgrywających główną rolę w modulowaniu odpowiedzi układu immunologicznego. Komórki Th1 i Th2 uczestniczą w regulacji odpowiedzi komórkowej i humoralnej, komórki Th17 zostały zaś zidentyfikowane jako subpopulacja komórek Th regulujących procesy zapalne poprzez produkcję odrębnych cytokin, takich jak IL-17. Główną cechą tej subpopulacji komórek jest udział w odpowiedzi skierowanej przeciwko drobnoustrojom oraz w patogenezie chorób autoimmunologicznych i alergicznych. Znaczenie komórek Th17 oraz IL-17 w regulacji poszczególnych etapów procesu zapalnego toczącego się w reumatoidalnym stawie nadal nie jest w pełni poznane i stanowi ostatnio cel wielu badań. W prezentowanej pracy omówiono najnowsze doniesienia dotyczące fenotypu, różnicowania oraz najważniejszych funkcji biologicznych ludzkich komórek Th17, a także przedstawiono ich rolę w patogenezie reumatoidalnego zapalenia stawów.
REFERENCJE (60)
1.
Andersson AK, Li C, Brennan FM. Recent developments in the immunobiology of rheumatoid arthritis. Arthritis Res Ther 2008; 10: 204.   .
 
2.
Boissier MC, Assier E, Biton J, et al. Regulatory T cells (Treg) in rheumatoid arthritis. Joint Bone Spine 2009; 76: 10-14.   .
 
3.
Awasthi A, Kuchroo VK. Th17 cells: from precursor to players in inflammation and infection. Int Immunobiol 2009; 21: 489-498.   .
 
4.
Crome SQ, Wang AY, Levings MK. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol 2009; 159: 109-119.   .
 
5.
Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348.   .
 
6.
Bettelli E, Korn T, Kuchroo VK. Th17: The third member of the effector T cell Trilogy. Curr Opin Immunol 2007; 19: 652-657.   .
 
7.
Mesquita D, Cruvinel WM, Camara NOS, et al. Autoimmune disease in the Th17 era. Braz J Med Biol Res 2009; 42: 476-486.   .
 
8.
Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123-1132.   .
 
9.
Paradowska-Gorycka A, Grzybowska-Kowalczyk A, Wojtecka-Lukasik E, et al. IL-23 in the pathogenesis of rheumatoid arthritis. Scand J Immunol 2010; 71: 134-145. .
 
10.
Bettelli E, Korn T, Oukka M, et al. Induction and effector functions of Th17 cells. Nature 2008; 453: 1051-1057. .
 
11.
Kim HR, Cho ML, Kim KW, et al. Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by Il-17 through PI3-kinase, NF-kappaB and p38 MAPK-dependent signaling pathways. Rheumatology 2007; 46: 57-64. .
 
12.
Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006;203:2673-2682. .
 
13.
Diveu C, McGeachy MJ, Boniface K, et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol 2009; 182: 5748-5756. .
 
14.
Yang Y, Weiner J, Liu Y, et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J Exp Med 2009; 206: 1550-1564. .
 
15.
Rouvier E, Luciani MF, Mattei MG, et al. CTLA-8 cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993; 150: 5445-5456. .
 
16.
Paradowska A, Maslinski W, Grzybowska-Kowalczyk A, et al. The function of interleukin 17 in the pathogenesis of rheumatoid arthritis. Arch Immunol Ther Exp 2007; 55: 329-334. .
 
17.
Lubberts E, Koenders MI, van den Berg WB. The role of T cell interleukin-17 in conducting destructive arthritis. Arthritis Res Ther 2005; 7: 29-37. .
 
18.
Lubberts E, Schwarzenberger P, Huang W, et al. Requirement of IL-17 receptor signaling in radiation-resistant cells in the joint for full progression of destructive synovitis. J Immunol 2005; 175: 3360-3368. .
 
19.
Tato CM, Laurence A, O-Shea JJ. Helper T cell differentiation enters a new era: le roi est mort; vive le roi! J Exp Med 2006; 203: 809-812. .
 
20.
Goriely S, Goldman M. Interleukin-12 family members and the balance between rejection and tolerance. Curr Opin Organ Transplant 2008;13: 4-9. .
 
21.
Boulay JL, O’Shea JJ, Paul WE. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 2003; 19: 159-163. .
 
22.
Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to from a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13: 715-725. .
 
23.
Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000; 18: 593-620 .
 
24.
Martinez GJ, Nurieva RI, Yang XO, et al. Regulation and function of proinflammatory Th17 cells. Ann NY Acad Sci 2008; 1143: 188-211. .
 
25.
Romagnani S, Maggi E, Liotta F, et al. Properties and origin of human Th17 cells. Mil Immunol 2009; 47: 3-7. .
 
26.
Annunziato F, Cosmi L, Liotta F, et al. Th17: Mice versus men. Human Th17 cells: Are they different from murine Th17 cells? Eur J Immunol 2009; 39: 643-675. .
 
27.
Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204: 1849-1861. .
 
28.
Brucklacher-Waldert V, Steinbach K, Lioznov M, et al. Phenotypical characterization of human Th17 cells unambiguously identified by surface IL-17 A expression. J Immunol 2009; 183: 5494-5501. .
 
29.
Annunziato F, Cosmi L, Liotta F, et al. The phenotype of human Th17 cells and their precursor, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int Immunol 2008; 11: 1361-1368. .
 
30.
Cosmi L, De Palma R, Santarlasci V, et al. Human interleukin 17-producing cells orginate from a CD161+CD4+ T cell precursor. J Exp Med 2008; 205: 1903-1916. .
 
31.
Maggi L, Santarlasci V, Capone M, et al. CD161 is a marker of all human IL-17-producing T-cell subset and is induced by RORC. Eur J Immunol 2010; 40: 2174-2181. .
 
32.
Lubberts E. IL-17/Th17 targeting: On the road to prevent chronic destructive arthritis? Cytokine 2008; 41: 84-91. .
 
33.
Evans HG, Gullick NJ, Kelly S, et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci U S A 2009; 14: 6232-6237. .
 
34.
Acosta-Rodríguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1-beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8: 942-949. .
 
35.
Chen Z, Tato CM, Muul L, et al. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 2007; 56: 2936-2946. .
 
36.
Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950-957. .
 
37.
van Beelen AJ, Zelnikova Z, Taanman-Kueter EW, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007; 27: 1-10. .
 
38.
Yang L, Anderson DE, Deacher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human Th17 cells. Nature 2008; 454: 350-352 .
 
39.
Manel N, Unutmaz D, Littman DR. The differentiation of human Th17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammaT. Nat Immunol 2008; 9: 641-649. .
 
40.
Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008; 9: 650-657. .
 
41.
Boniface K, Bak-Jensen KS, Li Y, et al. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 2009; 206: 535-548. .
 
42.
Unutmaz D. RORC2: The master of human Th17 cell programming Eur J Immunol 2009; 39: 1452-1455. .
 
43.
Basso AS, Cheroutre H, Mucida D. More stories on Th17 cells. Cell Res 2009; 19: 399-411. .
 
44.
Burgler S, Mantel PY, Bassin C, et al. RORC2 in involved in T cell polarization through interaction with the FOXP3 promoter. J Immunol 2010; 184: 6161-6169. .
 
45.
Crome SQ, Wang AY, Kang CY et al. The role of retinoic acid-related orphan receptor variant 2 and IL-17 in the development and function CD4+ T cells. Eur J Immunol 2009; 39: 1480-1493. .
 
46.
Dardalhon V, Korn T, Kuchroo VK, et al. Role of Th1 and Th17 cells in organ-specyfic autoimmunity. J Autoimmunity 2008; 31: 252-256. .
 
47.
Cheung PF, Wong CK, Lam CWK. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol 2008; 180: 5625-5635. .
 
48.
Peck A, Mellins ED. Precarious balance: Th17 cells in host defense. Infect Immun 2010; 78: 32-38. .
 
49.
Langowski JL, Zhang X, Wu L i wsp. IL-23 promotes tumour incidence and growth. Nature 2006; 442: 461-465. .
 
50.
Romagnani S. Human Th17 cells. Arthritis Res Ther 2008; 10: 206. .
 
51.
Yamada H, Nakashima Y, Okazaki K, et al. Th1 but not Th17 cells predominate in the joint of patients with rhaumatoid arthritis. Ann Rheum Dis 2007; 67: 1299-1304. .
 
52.
Shahrara S, Huang Q, Mandelin AM, et al. YH-17 cells in rheumatoid arthritis. Arthritis Res Ther 2008; 10: R93. .
 
53.
Tesmer LA, Lundy SK, Sarkar S, et al. Th 17 cells in human disease. Immunol Rev 2008; 223: 87-113. .
 
54.
Pernis AB. Th17 cells in rheumatoid arthritis an systemic lupus erythematosus. J Int Med 2009; 265: 644-652. .
 
55.
Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203: 2673-2682. .
 
56.
Peck A, Mellins ED. Breaking old paradigms: Th17 cells in autoimmune disease. Clin Immunol 2009; 132: 295-304. .
 
57.
Kehlen A, Pachino A, Thiele K, et al. Gene expression induced by interleukin-17 in fibroblast synoviocytes of patients with rheumatoid arthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res Ther 2003; 5: R186-R192. .
 
58.
Koshy PJ, Henderson N, Logan C, Life PF, et al. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines. Ann Rheum Dis 2002; 61: 704-713. .
 
59.
Chabaud M, Lubberts E, Joosten L, et al. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001; 3: 168-177. .
 
60.
Koenders MI, Lubberts E, Oppers-Walgreen B, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol 2005; 167: 141-149.
 
Copyright: © Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (https://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
eISSN:2084-9834
ISSN:0034-6233
Journals System - logo
Scroll to top